Skip to main content

Andreas K Athienitis, Eng., PhD, FCAE, FASHRAE, FIBPSA

Professor, Building, Civil, and Environmental Engineering

Director, Concordia Centre for Zero Energy Building Studies (EV 15.101)


Andreas K Athienitis, Eng., PhD, FCAE, FASHRAE, FIBPSA

Overview

Dr. Andreas K. Athienitis is a Professor of Building Engineering at Concordia University.  He obtained a B.Sc. in Mechanical Engineering (1981) from the University of New Brunswick and a PhD in Mechanical Engineering from the University of Waterloo (1985). He is the Principal Investigator and Scientific Director of two consecutive NSERC strategic networks: Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN: 2011-2017) and NSERC Solar Buildings Research Network (SBRN: 2005-2011). He held a Senior NSERC/Hydro Québec Industrial Research Chair and a Concordia University Research Chair, Tier I (2006 - 2024). He was profiled as one of 25 top innovators in Québec by Actualité Magazine (Sep. 15, 2009). He is a Fellow is of the Canadian Academy of Engineering (2011), a Fellow of ASHRAE (2017) and a Fellow of IBPSA (2017). He was named Concordia University Research Fellow (Senior) in 2010. In 2022-23 he led as Scientific Director the successful Concordia University CFREF proposal for $123M on “Electrified Resilient and Decarbonized Communities” (2023-30) and now Chairs its Scientific Committee and Leads Theme 1.

He is author/co-author of more than 300 refereed papers, three books on building thermal and solar modelling and design, and more recently an advanced book on modelling and design of net-zero energy buildings.  He is a recipient of eight best paper awards, including ASHRAE Willis H. Carrier award. He has served as Associate Editor of the ISES Journal "Solar Energy" and in ASHRAE Technical Committees. He has received several awards, including an NSERC-ADRIQ (Association pour le développement de la recherche et de l'innovation du Québec) Celebrate Partnerships Award in 2012 together with Hydro Québec and CanmetENERGY. His international activities include subtask leader for IEA SHC/ECBCS Task 40/Annex 52 focused on net-zero energy solar buildings, and contributing author for the Intergovernmental Panel on Climate Change (IPCC) for Direct Solar Energy. He led several innovative projects demonstrating building-integrated photovoltaic/thermal systems such as the John Molson School of Business building at Concordia and the energy design of the first near net-zero energy demonstration house in Canada, the EcoTerra. He played a key role in the conception and development of Canada’s first net-zero energy institutional building – the Varennes Library (2016). He is Chair of the Canadian Academy of Engineering Roadmap to Resilient, Ultra-Low Energy Built Environment with Deep Integration of Renewables.

He has received more than $30 M of research grants as P.I. including approximately $14 M for the SBRN and SNEBRN research programs (2005-2016). In 2011 he led the development of the $4.6M Solar Simulator and Environmental Chamber (SSEC) laboratory at Concordia. He has supervised over 100 students at all levels, 15 of whom have become professors in Canada, the US and overseas. He has served both as Graduate Program Director of Building Engineering. He is the founding Director of the Concordia Centre for Zero Energy Building Studies (2012). 

Education

  • Ph.D. Mechanical Engineering, May 1985, University of Waterloo, Waterloo Canada
  • B.Sc. Mechanical Engineering, May 1981, University of New Brunswick, Fredericton Canada

Honours and awards

  • Fellow, Canadian Academy of Engineering
  • Fellow, ASHRAE
  • Fellow, IBPSA
  • Concordia University Research Award (Technology, Industry and Environment - Established Category) 2010.
  • Concordia University Research Chair Tier I  (Jan. 2006 – present) – Integration of Solar Energy Systems into Buildings.
  • Willis H. Carrier Best Paper Award from American Society of Heating, Refrigerating and Air Conditioning Engineers (1991).
  • Izaak Walton Killam Post Doctoral Scholarship (University of Alberta, Dept. of Mechanical Engineering, 1985-87).
  • Commonwealth Scholarship (University of New Brunswick: 1978-81).

Scholarly and professional activities

  • Associate Editor, Journal of Building Performance Simulation
  • Appointed to Intergovernmental Panel for Climate Change (IPCC) (2009).

  • Member of NSERC Selection Panel for Discovery Grants in Mechanical Engineering, 2009-2012.

  • Member of Canadian Delegation in US-Canada Clean Energy Roundtable Dialogue, Washington, June 2009.

  • Subtask B (Design tools) co-leader, IEA SHC Task 40 / ECBCS Annex 52 “Towards Net-zero Energy Solar Buildings”  (2008 – present)

  • Member of NSERC Selection Panel 2 for Strategic Grants (Energy),  2007 – 2008.

  • Associate Editor, Journal of the Intern. Solar Energy Society "Solar Energy", 1997-2004.

  • Member of the Building Operation Dynamics Technical Committee, and of the Radiant and in-space Convective Heating and Cooling Technical Committee of ASHRAE (2004-2006).

Professional society memberships

  • Member, Order of Engineers of Quebec

  • Member, Canadian Society of Mechanical Engineers

  • Member, American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).

  • Member, International Solar Energy Society (ISES).

Research interests and activities

Research activities are focused on energy design and optimal control of high performance buildings, optimization of building-grid interaction, development and integration of solar energy systems into buildings to generate electricity, useful heat and for daylighting. My long term vision is the realization of solar-optimized buildings operating in Canada as integrated advanced technological systems that generate in an average year as much energy as they consume.

A key element of our approach is that solar technologies are integrated in an optimal manner with energy efficiency measures, with the building envelope and with HVAC systems, so the potential energy savings are even higher than separately applying the two approaches and reductions in total cost may be realized.

I am looking for new graduate students and postdoctoral fellows with strong backgrounds in building engineering or civil/mechanical engineering and related fields (applied physics, architectural engineering etc) to work in exciting projects using a new state-of-the-art solar simulator and environmental chamber – an internationally unique laboratory, and a suite of our custom-developed building software tools.

Dr. Athienitis with the JMSB solar façade system in the background.

Teaching activities


Research activities

Concordia solar simulator testing BIPV/T air collector in horizontal position (can vary tilt angle from vertical to horizontal).
Concordia mobile solar simulator with two-storey high environmental chamber (custom design).
Varennes Net-zero Energy Library

Publications

Back to top

© Concordia University