Concordia University

https://www.concordia.ca/content/concordia/en/faculty.html

Marek B. Majewski, PhD

Assistant Professor, Chemistry and Biochemistry

Office: L-SP 280-02 
Richard J. Renaud Science Complex,
7141 Sherbrooke W.
Phone: (514) 848-2424 ext. 2997
Email: marek.majewski@concordia.ca

Opportunities

The Majewski Lab is actively recruiting students (both graduate and undergraduate for a number of projects). For more information: MSc/PhD in Inorganic Photochemistry

Education

Postdoctoral Fellow - Argonne-Northwestern Solar Energy Research Center and Northwestern University
PhD - The University of British Columbia
BSc - University of Saskatchewan

Research Interests

Inorganic chemistry, solar energy conversion, artificial photosynthesis, photochemistry, photocatalysis, optical spectroscopy


Teaching

Chem 498/630: Solar Energy Conversion is a one-term course open to all degree programs. This course requires CHEM 234 (Physical Chemistry I: Thermodynamics) and CHEM 241 (Inorganic Chemistry I: Introduction to Periodicity and Valence Theory). This course will explore how inorganic chemistry enables solar energy conversion (as a source of alternative energy) through photochemistry/photobiology and photovoltaics (solar cells).

Chem 242: Inorganic Chemistry II: The Chemistry of the Main Group Elements is a one-term course in the Department of Chemistry and Biochemistry. This course requires CHEM 241 (Inorganic Chemistry I: Introduction to Periodicity and Valence Theory) and is a survey of the properties and reactions of: hydrogen; Group 1, lithium to cesium; and Group 2, beryllium to radium; including the theory of ionic bonding and structure. The chemistry of Group 13, boron to thallium; Group 14, carbon to lead; Group 15, nitrogen to bismuth; Group 16, sulphur to polonium; Group 17, the halogens; and Group 18, the chemistry of the noble gases.


Selected Publications

Majewski, M. B.; Peters, A. W.; Wasielewski, M. R.; Hupp, J. T.; Farha, O. K. "Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis" ACS Energy Lett. 2018, 3, 598. [DOI: 10.1021/acsenergylett.8b00010]

Majewski, M. B.; Howarth, A. J.; Li, P.; Wasielewski, M. R.; Hupp, J. T.; Farha, O. K. “Enzyme Encapsulation in Metal—Organic Frameworks for Applications in Catalysis” CrystEngComm. 2017, 19, 4082. [DOI: 10.1039/C7CE00022G]

Kamire, R. J.; Majewski, M. B.; Hoffeditz, W. L.; Phelan, B. T.; Farha, O. K.; Hupp, J. T.; Wasielewski, M. R. “Photodriven Hydrogen Evolution by Molecular Catalysts Using Al2O3-Protected Perylene-3,4-dicarboximide on NiO Electrodes” Chem. Sci. 2017, 8, 541. [DOI: 10.1039/C6SC02477G]

Majewski, M. B.; Smith, J. S.; Wolf, M. O.; Patrick, B. O. “Long-lived, emissive excited states in direct and amide-linked thienyl substituted Ru(II) complexes” Eur. J. Inorg. Chem. 2016, 1470 (cover profile: p. 1443). [DOI: 10.1002/ejic.201501436]

Rueda-Becerril, M.; Mahé, O.; Drouin, M.; Majewski, M. B.; West, J. G.; Wolf, M. O.; Sammis, G. M.; Paquin, J.-F. "Direct C-F Bond Formation Using Photoredox Catalysis" J. Am. Chem. Soc. 2014, 136, 2637. [DOI: 10.1021/ja412083f]

Majewski, M. B.; de Tacconi, N. R.; MacDonnell, F. M.; Wolf, M. O. "Long-lived, directional photoinduced charge separation in Ru(II) complexes bearing laminate polypyridyl ligands" Chem. Eur. J. 2013, 19, 8331. [DOI: 10.1002/chem.201203786]

Majewski, M. B.; de Tacconi, N. R.; MacDonnell, F. M.; Wolf, M. O. "Ligand-Triplet-Fueled Long-Lived Charge Separation in Ruthenium(II) Complexes with Bithienyl-Functionalized Ligands." Inorg. Chem. 2011, 50, 9939-9941. [DOI: 10.1021/ic201895y]

Back to top

© Concordia University