Concordia University

Bruno Lee, PhD, CEng MCIBSE, LEED AP

Assistant Professor, Building, Civil, and Environmental Engineering

Biography    Teaching    Research   

Office: S-EV 15103 
Engineering, Computer Science and Visual Arts Integrated Complex,
1515 St. Catherine W.
Phone: (514) 848-2424 ext. 5399
Website(s): Explore Concordia - Bruno Lee

Dr. Lee specializes in building energy performance simulation. His current research is interdisciplinary in nature covering areas in building envelopes, HVAC systems, renewable energy systems, and lighting as they are applied to building as a whole. His work focuses on investigating how to better employ different computational simulation techniques to study the performance of the built environment in an integrated manner. The objectives of his research are to facilitate building design decisions that are based on objective and data driven reasoning, and to advance evaluation means to ensure robust design solutions that survive future challenges in a dynamic environment. His current work involves applying building performance simulation, sensitivity analysis, cost-benefit analysis, life-cycle analysis, multi-criteria decision making, multi-objective optimization, automated design space exploration, stochastic risk analysis to different types of built environment to address various concerns.

Dr. Lee joined Concordia in 2014. Dr. Lee obtained his Ph.D. degree from the Department of the Built Environment (Unit of Building Physics and Services) at the Eindhoven University of Technology (TU/e), the Netherlands. His PhD research work, supported by Materials innovation institute (M2i), had a close tie with the industry and resulted in two industrial funded projects that valorized the research into practical applications. He graduated from the Pennsylvania State University (Penn State) in 2009 with a M.S. in Architectural Engineering. He earned his B.Eng with distinction in Building Engineering from Concordia University in 2007 and was awarded the Building Engineering Medal.


  • BLDG 212, Building Engineering Drawing and Introduction to Design
  • BLDG 341, Building Engineering Systems
  • BLDG 6951, Solar Building Modelling and Design
  • ENGR 6811, Energy Resources: Conventional and Renewable



  • Resilient High Performance Smart Building
  • Integrated Building Design through Co-simulation
  • Stochastic Optimization of Energy and Durability Performance
  • Robust Building Design under Varying Operating Conditions
  • BIM-based Automated Energy Performance Simulation

Selected journal papers

  • Bruno Lee, Navid Pourmousavian, and Jan L.M. Hensen (2016). "Full-factorial design space exploration approach for multi-criteria decision making of the design of industrial halls." Energy and Buildings, 117, 352–361.
  • Bruno Lee, and Jan L.M. Hensen (2015). "Developing a risk indicator to quantify robust building design." Energy Procedia, 78, 1895 – 1900.
  • Bruno Lee, Marija Trcka, and Jan L.M. Hensen (2013). "Building energy simulation and optimization: a case study of industrial halls with varying process loads and occupancy patterns." Building Simulation: An International Journal, 7(3), 229-236
  • Bruno Lee, Marija Trcka, and Jan L.M. Hensen (2013). "Rooftop photovoltaic (PV) systems: a cost–benefit analysis study of industrial halls." International Journal of Low-Carbon Technologies, 0, 1–8
  • Bruno Lee, Marija Trcka, and Jan L.M. Hensen (2012). "Rooftop photovoltaic (PV) systems for industrial halls: achieving economic benefit via lowering energy demand." Frontiers of Architectural Research, 1(4), 326-333
  • Bruno Lee, Marija Trcka, and Jan L.M. Hensen (2011). "Embodied energy of building materials and green building rating systems: a case study for industrial halls." Sustainable Cities and Society, 1(2), 67-71

Back to top

© Concordia University