Concordia University

Dr. Victor Kalvin, PhD

Assistant Professor, Mathematics and Statistics

Office: S-LB 910 
J.W. McConnell Building,
1400 De Maisonneuve W.
Phone: (514) 848-2424 ext. 3289
Website(s): Google Scholar


Ph.D.: University of Jyväskylä, Finland 2004

Research Interests

Geometric/Global/Applied Analysis, Analysis on Non-compact and Singular Manifolds, Partial Differential Equations, Pseudo-Differential Operators, Mathematical Physics, and Scientific Computing. 

These include: General Elliptic Boundary Value Problems, Asymptotic Theory, Spectral Theory (for selfadjoint and non-selfadjoint operators), Theory of Analytic and Singular Perturbations, Scattering Theory,  Spectral Determinants (zeta-regularizations for the determinant of the Laplace operator on non-compact/singular manifolds), related Numerical Methods and mathematical analysis of their stability and convergence.



Winter 2018

  • ENGR 233: Applied Advanced Calculus
  • Office Hours: Tuesdays 12:00-13:30 (LB 910.00 SGW)                                                                                                           
Fall 2017

  • ENGR 213: Applied Ordinary Differential Equations
  • Office Hours: Thursdays 12:00-13:30 (LB 910.00 SGW)                                                                                                                            
  • MATH 354/MAST 334: Numerical Analysis (Approximation Theory)
  • Office Hours: Mondays 14:00-15:30 (LB 910.00 SGW)

Recent Publications

  • On Determinants of Laplacians on Compact Riemann Surfaces equipped with Pullbacks of Conical Metrics by Meromorphic Functions, Preprint (2017), arXiv:1712.05405
  • Determinant of Laplacian on tori of constant positive curvature with one conical point, Preprint (2017), arXiv:1712.04588 (with A. Kokotov)
  • Metrics of curvature 1 with conical singularities, Hurwitz spaces, and determinants of Laplacians, Intern. Math. Research Notices (2017) in press, DOI: 10.1093/imrn/rnx224 (with A. Kokotov)
  • Moduli spaces of meromorphic functions and determinant of Laplacian, Trans. Amer. Math. Soc. (2017) in press, DOI: 
    (with L. Hillairet and A. Kokotov).
  • Spectral determinants on Mandelstam diagrams, Comm. Math. Phys. 343 (2016), no. 2, pp. 563-600, (with L. Hillairet and A. Kokotov).
  • Spectral deformations and exponential decay of eigenfunctions for the Neumann Laplacian on manifolds with quasicylindrical ends,  J. Math. Anal. Appl. 432 (2015), pp. 749-760.
  • Analysis of perfectly matched layer operators for acoustic scattering on manifolds with quasicylindrical ends, J. Math. Pures Appl. 100 (2013), pp. 204-219.
  • Spectral deformations for quasicylindrical domains, 15 pages, Commun. Contemp. Math.,  Article ID 1250065, 15 p. (2013).
  • Limiting Absorption Principle and Perfectly Matched Layer Method for Dirichlet Laplacians in Quasi-Cylindrical Domains, SIAM J. Math. Anal. 44 (2012), pp. 355-382.
  • Perfectly Matched Layers for diffraction gratings in inhomogeneous media. Stability and error estimates, SIAM J. Numer. Anal. 49 (2011), pp. 309-330.

Back to top

© Concordia University