Concordia University

http://www.concordia.ca/content/concordia/en/artsci/biology/faculty.html.html

Faculty

Vladimir Titorenko, PhD

Professor and Research Chair in Genomics, Cell Biology and Aging, Biology

Office: L-SP 501-13 
Richard J. Renaud Science Complex,
7141 Sherbrooke W.
Phone: (514) 848-2424 ext. 3424
Email: vladimir.titorenko@concordia.ca
Website(s): laboratory website

Education

PhD (Moscow)

Research interests

Molecular and cellular mechanisms of aging and age-related disorders

Media

Our demonstration of a potent anti-tumor effect of lithocholic acid in cultured human cancer cells and our identification of the mechanisms underlying such effect of lithocholic acid has been highlighted in the news media, including: The Montreal Gazette; Radio-Canada; The Vancouver Sun; La Presse; Métro Montréal; The Regina Leader-Post; The Windsor Star; The Edmonton Journal; Calgari Herald; MSN Technologie; Bio-Medicine; Medical Xpress; Biology News Net; News Medical; Food Consumer; Science Daily; ScienceNewsline; Canada.com; Cancer; Anti-Aging News; Herbal Treatment; Le Devoir; FierceBiotech; Drug Discovery & Development; BrightSurf.com; Psychomedia; mediLexicon; Walfadjri; Medical News Today; Sante log; La Tribune; Bioscience Technology; Concordia NOW; The Concordian and others.

Dr. Vladimir Titorenko has been named “Personnalité de la semaine La Presse/Radio-Canada” (see here and here).

For a discussion of our research on a mechanism underlying a potent anti-tumor effect of lithocholic bile acid in cultured human cancer cells and its potential applications, please watch this YouTube video:


Teaching activities

BIOL 266 (Cell Biology)


Selected publications

Titorenko, V.I. Book review on ″Anti-aging Drugs: From Basic Research to Clinical Practice″. ChemMedChem (2017) in press, doi: 10.1002/cmdc.201700585.


Draz, H.M., Goldberg, A.A., Titorenko, V.I.,Tomlinson Guns, E.S., Safe, S. and Sanderson, J.T. Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-dependent kinase (AMPK). Cellular Signalling (2017) 40:172-182.


Mitrofanova,D., Dakik, P., McAuley, M., Medkour, Y., Mohammad, K. and Titorenko, V.I. Lipid metabolism and transport define longevity ofthe yeast Saccharomyces cerevisiae. Front. Biosci. (2017) 22: in press.

 

Leonov, A., Feldman,R., Piano, A., Arlia-Ciommo, A., Lutchman, V., Ahmadi, M., Elsaser, S., Fakim, H.,Heshmati-Moghaddam, M., Hussain, A., Orfali, S., Rajen, H., Roofigari-Esfahani,N., Rosanelli, L. and Titorenko, V.I.Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state. Oncotarget (2017) 8:69328-69350.


Medkour,Y., Dakik, P., McAuley, M., Mohammad, K., Mitrofanova, D. and Titorenko, V.I. Mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging. Oxid. Med. Cell. Longev.(2017) 2017:2916985.

 

Iouk,T. and Titorenko, V.I. A laboratorytest of evolutionary aging theories. Aging(2017) 9:600-601.

 

Leonov, A., Arlia-Ciommo, A., Bourque, S.D., Koupaki, O., Kyryakov, P., Dakik, P.,McAuley, M., Medkour, Y., Mohammad, K., Di Maulo, T. and Titorenko, V.I. Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast. Oncotarget (2017) 8:30672-30691.


Gomez-Perez,A., Kyryakov, P., Burstein, M.T., Asbah, N., Noohi, F., Iouk, T. and Titorenko, V.I. Empirical validation ofa hypothesis of the hormetic selective forces driving the evolution oflongevity regulation mechanisms. Front.Genet. (2016) 7:216.


Gafar, A.A., Draz, H.M., Goldberg, A.A., Bashandy, M.A., Bakry, S.,Khalifa, M.A., AbuShair, W., Titorenko,V.I. and Sanderson, J.T. Lithocholic acid induces endoplasmic reticulumstress, autophagy and mitochondrial dysfunction in human prostate cancer cells.PeerJ (2016) 4:e2445.

 

Kyryakov, P., Gomez-Perez, A., Glebov, A., Asbah, N., Bruno, L.,Meunier, C., Iouk, T. and Titorenko,V.I. Empirical verification of evolutionary theories of aging. Aging (2016) 8:2568-2589.

 

Arlia-Ciommo, A., Dakik, P., Leonov, A.,McAuley, M., Medkour, Y., Mohammad, K., Iouk, T., Simard, É. and Titorenko, V.I. Mechanisms throughwhich chemical compounds produced by mammals or plants delay chronologicalaging in yeast. Austin Biol. (2016)1:1011.


Dakik, P. and Titorenko, V.I. Communications between mitochondria, the nucleus,vacuoles, peroxisomes, the endoplasmic reticulum, the plasma membrane, lipiddroplets and the cytosol during yeast chronological aging. Front. Genet. (2016) 7:177.


Lutchman,V., Dakik, P., McAuley, M., Cortes, B., Ferraye, G., Gontmacher, L., Graziano,D., Moukhariq, F., Simard, É. and Titorenko,V.I. Six plant extracts delay yeast chronological aging through differentsignaling pathways. Oncotarget (2016)7:50845-50863.

 

Medkour,Y., Svistkova, V. and Titorenko, V.I. Cell-nonautonomousmechanisms underlying cellular and organismal aging. Int. Rev. Cell Mol. Biol. (2016) 321:259-297.

 

Arlia-Ciommo,A., Svistkova, V., Mohtashami, S. and Titorenko,V.I. A novel approach to the discovery of anti-tumor pharmaceuticals:searching for activators of liponecrosis. Oncotarget(2016) 7:5204-5225.

 

Klionsky,D.J. et al. (including Titorenko, V.I.).Guidelines for the use and interpretation of assays for monitoring autophagy (3rdedition). Autophagy (2016) 12:1-222.

 

Medkour,Y. and Titorenko, V.I. Mitochondriaoperate as signaling platforms in yeast aging. Aging (2016) 8:212-213.

 

Lutchman,V., Medkour, Y., Samson, E., Arlia-Ciommo, A., Dakik, P., Cortes, B., Feldman,R., Mohtashami, S., McAuley, M., Chancharoen, M., Rukundo, B., Simard, E. and Titorenko, V.I. Discovery of plantextracts that greatly delay yeast chronological aging and have differenteffects on longevity-defining cellular processes. Oncotarget (2016) 7:16542-16566.

 

Tremblay,M., Zhang, I., Bisht, K., Savage, J., Lecours, C., Parent, M., Titorenko, V.I. and Maysinger, D.Remodeling of lipid bodies by docosahexaenoic acid in activated microglialcells. J. Neuroinflammation (2016)13:116.

 

Piano,A. and Titorenko, V.I. The intricateinterplay between mechanisms underlying aging and cancer. Aging and Disease (2015) 6:56-75.

 

Beach,A., Leonov, A., Arlia-Ciommo, A., Svistkova, V., Lutchman, V. and Titorenko, V.I. Mechanisms  by which  different  functional states  of  mitochondria define  yeast  longevity. Int. J. Mol. Sci. (2015) 16:5528-5554.

 

Titorenko, V.I. andRachubinski, R.A. (editors). Origin and spatiotemporal dynamics of theperoxisomal endomembrane system. Frontiers Research Topic E-book. FrontiersMedia SA, Switzerland (2015).

 

Leonov,A., Arlia-Ciommo, A., Piano, A., Svistkova, V., Lutchman, V., Medkour, Y. and

Titorenko, V.I.Longevity extension by phytochemicals. Molecules(2015) 20:6544-6572.

 

Beach,A., Richard, V.R., Bourque, S., Boukh-Viner, T., Kyryakov, P., Gomez-Perez,A.,  Arlia- Ciommo, A., Feldman, R.,Leonov, A., Piano, A., Svistkova, V. and Titorenko,V.I. Lithocholic bile acid accumulated in yeast mitochondria orchestrates adevelopment  of an anti-aging cellularpattern by causing age-related changes in cellular proteome. Cell Cycle (2015) 14:1643-1656.

 

Shebani,S., Jones, N., Eid, R., Gharib, N., Arab, N., Titorenko, V.I., Vali, H., Young, P. and Greenwood, M. Inhibitionof stress mediated cell death by human Lactate Dehydrogenase B (LDHB) in yeast.FEMS Yeast Res. (2015) 15:fov032.

 

Sheibani,S., Richard, V.R., Beach, A., Leonov, A., Feldman, R., Khelghatybana, L.,  Piano, A., Greenwood, M., Vali, H. and Titorenko, V.I. Macromitophagy, neutrallipids  synthesis and peroxisomal fattyacid oxidation protect yeast from “liponecrosis”, a  previously unknown form of programmed celldeath. Cell Cycle (2014) 13:138-147.

 

Goldberg,A.A., Titorenko, V.I., Beach, A.,Abdelbaqi, K., Safe, S. and Sanderson, J.T. Ring- substituted analogs of 3, 3'-diindolylmethane (DIM) induceapoptosis and necrosis in androgen- dependent and -independent prostate cancercells. Invest. New Drugs (2014)32:25-36.

 

Burstein,M.T. and Titorenko, V.I. Amitochondrially targeted compound delays aging in yeast through a mechanismlinking mitochondrial membrane lipid metabolism to mitochondrial redox biology.Redox Biol. (2014) 2:305-307.

 

Richard,V.R., Bourque, S.D. and Titorenko, V.I.Metabolomic and lipidomic analyses of chronologically aging yeast. In: YeastGenetics. Methods and Protocols. Eds. Smith, J.S. and Burke, D.J. Humana Press,USA, pp. 359-373 (2014).

 

Arlia-Ciommo,A., Leonov, A., Piano, A., Svistkova, V. and Titorenko, V.I. Cell- autonomous mechanisms of chronological agingin the yeast Saccharomyces cerevisiae.Microbial Cell (2014) 1:164-178.

 

Martins,D., Titorenko, V.I. and English,A.M. Cells with impaired mitochondrial H2O2 sensinggenerate less •OH radicals and live longer. Antioxid.Redox. Signal. (2014) 21:1490-1503.

 

Richard,V.R., Bourque, S.D. and Titorenko, V.I.Metabolomic and lipidomic analyses of chronologically aging yeast. Methods Mol. Biol. (2014) 1205:359-373.

 

Arlia-Ciommo,A., Piano, A., Svistkova, V., Mohtashami, S. and Titorenko, V.I. Mechanisms underlying the anti-aging and anti-tumoreffects of lithocholic bile acid. Int.  J. Mol. Sci. (2014) 15:16522-16543.

 

Richard,V.R., Beach, A., Piano, A., Leonov, A., Feldman, R., Burstein, M.T.,Kyryakov,  P., Gomez-Perez, A.,Arlia-Ciommo, A., Baptista, S., Campbell, C., Goncharov, D.,  Pannu, S., Patrinos, D., Sadri, B.,Svistkova, V., Victor, A. and Titorenko,V.I.  Mechanism of liponecrosis, adistinct mode of programmed cell death. CellCycle (2014) 13:3707-3726.

 

Arlia-Ciommo,A., Piano, A., Leonov, A., Svistkova, V. and Titorenko, V.I. Quasi- programmed aging of budding yeast: atrade-off between programmed processes of cell proliferation, differentiation,stress response, survival and death defines yeast lifespan. Cell Cycle (2014) 13:3336-3349.

 

Titorenko, V.I. and Rachubinski,R.A. Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.Front. Physiol. (2014) 5:493.

 

Filyak,Y., Finiuk, N., Mitina, N., Bilyk, O., Titorenko,V.I., Hrydzhuk, O., Zaichenko, A. and Stoika, R. A novel method for genetictransformation of yeast cells using oligoelectrolyte polymeric nanoscalecarriers. BioTechniques (2013) 54:35-43.

 

Beach,A., Burstein, M.T., Richard, V.R., Gomez-Perez, A., Leonov, A., Iouk, T. and Titorenko, V.I. A modular networkregulates longevity of chronologically aging yeast.  CellBiol. Res. Ther. (2013) 2:1000e110.

 

Richard,V.R., Leonov, A., Beach, A., Burstein, M.T., Koupaki, O., Gomez-Perez, A.,Levy, S., Pluska, L., Mattie, S., Rafeh, R., Iouk, T., Sheibani, S., Greenwood,M., Vali, H. and Titorenko, V.I.Macromitophagy is a longevity assurance process that in chronologically agingyeast limited in calorie supply sustains functional mitochondria and maintainscellular lipid homeostasis. Aging(2013) 5:234-269.

 

Beach,A. and Titorenko, V.I. EssentialRoles of Peroxisomally Produced and Metabolized Biomolecules in RegulatingYeast Longevity. In: Peroxisomes and their Key Role in Cellular Signaling andMetabolism. Ed. del Rio, L.A. Springer Science Business Media Dordrecht,Germany, pp. 153-167 (2013).

 

Titorenko, V.I. andHarkness, T.A.A. (editors). The spatiotemporal dynamics of longevity- definingcellular processes and its modulation by genetic, dietary and pharmacologicalanti-aging interventions. Frontiers Research Topic E-book. Frontiers Media SA,Switzerland (2013).

 

Leonov,A. and Titorenko, V.I. A network ofinterorganellar communications underlies cellular aging. IUBMB Life (2013) 65:665-674.

 

Beach,A. and Titorenko, V.I. Essentialroles of peroxisomally produced and metabolized biomolecules in regulatingyeast longevity. Subcell. Biochem.(2013)  69:153-167.

 

Beach,A., Richard, V.R., Leonov, A., Burstein, M.T., Bourque, S.D., Koupaki, O.,Juneau, M., Feldman, R., Iouk, T. and Titorenko,V.I. Mitochondrial membrane lipidome defines yeast longevity. Aging (2013) 5:551-574.

 

Goldberg,A.A., Beach, A., Titorenko, V.I. andSanderson, J.T. Bile acids induce apoptosis selectively in androgen-dependentand -independent prostate cancer cells.  PeerJ (2013) 1:e122.

 

Khatchadourian,A., Bourque, S.D., Richard, V.R., Titorenko,V.I. and Maysinger, D. Dynamics and regulation of lipid droplet formationin lipopolysaccharide (LPS)-stimulated microglia. Biochem. Biophys. Acta (2012) 1821:607-617.

 

Burstein,M.T., Beach, A., Richard, V.R., Koupaki, O., Gomez-Perez, A., Goldberg, A.A.,Kyryakov, P., Bourque, S.D., Glebov, A. and Titorenko, V.I. Interspecies chemical signals released into the environment may create xenohormetic,hormetic and  cytostatic selective forcesthat drive the ecosystemic evolution of longevity regulation  mechanisms. Dose-Response (2012) 10:75-82.

 

Kyryakov,P., Beach, A., Richard, V.R., Burstein, M.T., Leonov, A., Levy, S. and Titorenko, V.I. Caloric restrictionextends yeast chronological lifespan by altering a pattern of age-relatedchanges in trehalose concentration. Front.Physiol. (2012) 3:256.

 

Beach,A., Burstein, M.T., Richard, V.R., Leonov, A., Levy, S. and Titorenko, V.I. Integration ofperoxisomes into an endomembrane system that governs cellular aging.  Front.Physiol. (2012) 3:283.

 

Burstein,M.T., Kyryakov, P., Beach, A., Richard, V.R., Koupaki, O., Gomez-Perez, A.,Leonov, A., Levy, S., Noohi, F. and Titorenko,V.I. Lithocholic acid extends longevity of chronologically aging yeast onlyif added at certain critical periods of their lifespan. Cell Cycle (2012) 11:3443- 3462.

 

Titorenko, V.I. andHarkness, T.A.A. The spatiotemporal dynamics of longevity-defining cellularprocesses and its modulation by genetic, dietary and pharmacological anti-aginginterventions. Front. Physiol. (2012)3:419.

 

Titorenko, V.I. andTerlecky, S.R. Peroxisome metabolism and cellular aging. Traffic (2011) 12:252-259.

 

Beach,A. and Titorenko, V.I. In search ofhousekeeping pathways that regulate longevity. Cell Cycle (2011) 10:3042-3044.

 

Goldberg,A.A., Beach, A., Davies, G.F., Harkness, T.A.A., LeBlanc, A. and Titorenko, V.I. Lithocholic bile acidselectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget (2011) 2:761-782.

 

Back to top

© Concordia University