Skip to main content

Laurent Potvin-Trottier, PhD

Assistant Professor, Biology


Laurent Potvin-Trottier, PhD
Phone: (514) 848-2424 ext. 3618
Email: laurent.potvin@concordia.ca
Website(s): Lab website

Education

B. Eng (Ecole Polytechnique de Montreal)
M. Sc. (McGill University)
PhD (Harvard University)

Research interests

Synthetic biology, by engineering biological systems for specific functions, can have widespread applications. For example, microorganisms can be engineered to produce valuable chemicals that are difficult to synthesize, or cells engineered to detect and respond to levels of glucose concentration by secreting insulin. Moreover, building simple circuits with well-characterized molecular components can teach us a lot about biology. These minimal circuits provide us with a tractable context where we can control all of the components and their interactions (much like a biological electronic breadboard), in addition to generating useful perturbations to probe biological systems. Using approaches inspired by physics, these minimalistic models can give us deeper insights into biological systems. The lab research goals are to engineer reliable synthetic gene circuits suitable for impactful applications, and to use them as models and tools to learn more about biology.


Selected publications

Potvin-Trottier,L., Luro, S.L., & Paulsson, J. (2018). Microfluidicsand single-cell microscopy to study stochastic processes in bacteria. Current Opinion in Microbiology 43, 186–192. Link


Potvin-Trottier, L., Lord, N. D., Vinnicombe, G., & Paulsson, J. (2016). Synchronous long-term oscillations in a synthetic gene circuit. Nature, 538(5626), 514-517. Link

- News and Views: Gao, X. J., & Elowitz, M. B.(2016). Synthetic biology: Precision timing in a cell. Nature538(7626),462-463. Link

- Invited Commentary: Potvin-Trottier, L. and Paulsson J. (2017). Principles of Systems Biology, No. 11. Cell Systems Link

Uphoff, S., Lord, N. D., Okumus, B., Potvin-Trottier, L., Sherratt, D. J., & Paulsson, J. (2016). Stochastic activation of a DNA damage response causes cell-to-cell mutation rate variation. Science351(6277),1094-1097. Link

 

Godin, A. G., Rappaz, B., Potvin-Trottier, L., Kennedy, T. E., DeKoninck, Y., & Wiseman, P. W. (2015). Spatial intensity distribution analysis reveals abnormal oligomerization of proteins in single cells. Biophysical journal,109(4), 710-721. Link

 

Potvin-Trottier, L., Chen, L., Horwitz, A. R., & Wiseman, P. W.(2013). A nu-space for image correlation spectroscopy: characterization and application to measure protein transport in live cells. New journal of physics15(8), 085006. Link

Back to top

© Concordia University