Skip to main content

Nicola Oddy, PhD RP MTA CCC

Professor, Part-time Faculty, Creative Arts Therapies

Teaching MTHY 693 - RESEARCH IN MUSIC THERAPY: Qualitative and Quantitative Methods


Nicola Oddy, PhD RP MTA CCC
Office: S-ER 106  
ER Building,
2155 Guy St.
Phone: (514) 848-2424 ext. 4254
Email: nicola.oddy@concordia.ca
Website(s): Nicola Oddy

Nicola earned her PhD at Carleton University in Cultural Mediations where she studied performance theory, vocality and acoustemology to learn about the cultural implications of engaging in performative free vocal improvisation in public spaces. She has been a music therapy clinician since 1985 and is certified by the Canadian Association for Music Therapists. She is also is a Certified Counsellor with the Canadian Counselling and Psychotherapy Association and a Registered Psychotherapist in Ontario.  She has been on the roster as a part-time professor at Concordia University since 2010 in the Creative Arts Therapies, music therapy program. In addition she teaches in the Faculty of Arts and Social Sciences and in the Department of Industrial Design at Carleton University and provides music centred supervision to interns and professionals.  


Participation


Teaching activities

Courses:

CHME 6911 - Topics in Chemical Engineering I: Electrochemical Engineering
CHME 6031 - Chemical Kinetics and Reaction Engineering
CHME 6071 - Materials Science & Engineering


Publications

Journal Publications

  1. Jing, Y., Zhao, E.W., Goulet, M.-A., Bahari, M., Fell, E., Jin, S., Davoodi, A., Jónsson, E., Wu, M., Grey,C., Gordon, R.G., Aziz, M.J., In situelectrochemical recomposition of decomposed redox-active species in aqueousorganic flow batteries, Nature Chemistry, 2022, 1-7.

  2. Jing, Y., Fell, E., Wu, M., Jin, S., Ji, Y., Pollack, D.A., Tang, Z., Ding, D., Bahari, M., Goulet, M.-A., Tsukamoto, T., Gordon, R.G., Aziz, M.J., Anthraquinone Flow Battery Reactants with Nonhydrolyzable Water-Solubilizing Chains Introduced via a Generic Cross-Coupling Method, ACS Energy Letters, 2022, 7 (1), 226–235.

  3. Tong, L., Goulet, M.-A., Tabor, D.P., Kerr, E.F., De Porcellinis, D., Fell, E.M., Aspuru-Guzik, A., Gordon, R.G., and Aziz, M.J., Molecular Engineering of an Alkaline Naphthoquinone Flow Battery, ACS Energy Letters, 2019, 4 (8): 1880−1887.

  4. Li, W., Kerr, E.F., Goulet, M.-A., Fu, H., Zhao, Y., Yang, Y., Veyssal, A., He, J.-H., Gordon, R.G., Aziz, M.J., Jin, S., A Long Lifetime Aqueous Organic Solar Flow Battery, Advanced Energy Materials, 2019,  1900918.

  5. Liu, Y., Goulet, M.-A., Tong, L., Liu, Y., Ji, Y., Wu, L., Gordon, R.G., Aziz, M.J., Yang, Z., Xu, T., A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical, Chem, 2019, 5 (7): 1–10.

  6. Jin, S., Jing, Y., Kwabi, D.G., Ji, Y., Tong, L., De Porcellinis, D., Goulet, M.-A., Pollack, D.A., Gordon, R.G., Aziz, M.J., A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density, ACS Energy Letters, 2019, 4 (6): 1342−1348.

  7. Park, M., Beh, E.S., Fell, E.M. ,Jing, Y., Kerr, E.F., De Porcellinis, D., Goulet, M.-A., Ryu, J., Wong, A.A., Gordon, R.G., Cho, J., Aziz, M.J., A High Voltage Aqueous Zinc–Organic Hybrid Flow Battery, Advanced Energy Materials, 2019, 1900694.

  8. Goulet, M.-A., Tong, L., Pollack, D.A., Tabor, D., Odom, S.A., Aspuru-Guzik, A., Kwan, E.E., Gordon, R.G., Aziz, M.J. Extending the Lifetime of Organic Flow Batteries via Redox State Management, Journal of the American Chemical Society, 2019, 141 (20): 8014-8019.

  9. Ji, Y., Goulet, M.-A., Pollack,D.A.,Kwabi, D.G., Jin, S., De Porcellinis, D., Kerr, E.F., Gordon, R.G., Aziz, M.J.,A Phosphonate-Functionalized Quinone Redox Flow Battery at Near-Neutral pH with Record Capacity Retention Rate, Advanced Energy Materials, 2019, 1900039.

  10. Goulet, M.-A., Aziz, M.J., Flow Battery Molecular Reactant Stability Determined by Symmetric Cell Cycling Methods, Journal of the Electrochemical Society, 2018, 165 (7): A1466–A1477.

  11. Kwabi, D., Lin, K., L., Ji, Y.,Kerr, E.F., Goulet, M.-A., De Porcellinis, D., Tabor, D., Pollack, D.A., Aspuru-Guzik,A., Gordon, R.G., Aziz, M.J., Alkaline Quinone Flow Battery with Long Lifetime at pH 12, Joule, 2018, 2 (9):1894–1906.

  12. Yang, Z., Tong, L., Tabor, D.P., Beh, E.S., Goulet, M.-A., De Porcellinis, D., Aspuru-Guzik, A., Gordon, R.G., Aziz, M.J., Alkaline Benzoquinone Aqueous Flow Battery for Large-Scale Storage of Electrical Energy, Advanced Energy Materials, 2017,1702056.

  13. Goulet, M.-A., Ibrahim, O. A., Kim, W.H.J. and Kjeang, E., Maximizing the power density of aqueous electrochemical flow cells with in operando deposition, Journal of Power Sources,2017, 339: 80-85.

  14. Goulet, M.-A., Habisch, A. and Kjeang, E., In situ enhancement of flow-through porous electrodes with carbon nanotubes via flowing deposition, Electrochimica Acta, 2016,206: 36-44.

  15. Goulet, M.-A., Skyllas-Kazacos, M. and Kjeang, E., The importance of wetting in carbon paper electrodes for vanadium redox reactions, Carbon, 2016, 101: 390-398.

  16. Ibrahim, O. A., Goulet, M.-A. and Kjeang, E., In-situ characterization of symmetric dual-pass architecture of microfluidic co-laminar flow cells, Electrochimica Acta, 2016, 187:277-285.

  17. Goulet, M.-A., Eikerling, M. and Kjeang, E., Direct measurement of electrochemical reaction kinetics in flow-through porous electrodes, Electrochemistry Communications, 2015, 57: 14-17.

  18. Ibrahim, O. A., Goulet, M.-A. and Kjeang, E., Microfluidic Electrochemical Cell Array in Series: Effect of Shunt Current, Journal of the Electrochemical Society, 2015, 162: F639–F644.

  19. Arjona, N., Goulet, M.-A., Guerra-Balcazar, M., Ledesma-Garcia, J., Kjeang, E. and Arriaga, L.G., Direct formic acid microfluidic fuel cell with Pd nanocubes supported on flow-through microporous electrodes, ECS Electrochemistry Letters, 2015,4 (4): F24-F28.

  20. Sadeghi Alavijeh, A., Goulet, M.-A., Khorasany, R.M.H., Ghataurah, J., Lim, C., Lauritzen, M., Kjeang, E., Wang, G.G. and Rajapakse, R.K.N.D., Decay in Mechanical Properties of Catalyst Coated Membranes Subjected to Combined Chemical and Mechanical Membrane Degradation, Fuel Cells, 2015, 15 (1): 204-213.

  21. Goulet, M.-A., Arbour, S., Lauritzen, M. and Kjeang, E., Water sorption and expansion of an ionomer membrane constrained by fuel cell electrodesJournal of Power Sources, 2015, 274: 94-100.

  22. Goulet, M.-A. and Kjeang, E., Reactant recirculation in electrochemical co-laminar flow cells, Electrochimica Acta, 2014, 140: 217-224.

  23. Goulet, M.-A. and Kjeang, E., Co-laminar flow cells for electrochemical energy conversion, Journal of Power Sources, 2014, 260: 186-196.

  24. Khorasany, R.M.H., Goulet, M.-A., Sadeghi Alavijeh, A., Kjeang, E., Wang, G.G. and Rajapakse, R.K.N.D., On the Constitutive Relations for Catalyst Coated Membrane Applied to In-Situ Fuel Cell Modeling, Journal of Power Sources, 2014, 252: 176-188.

  25. Lee, J.W., Goulet, M.-A. and Kjeang, E., Microfluidic Redox BatteryLab on a Chip, 2013, 13: 2504-2507.

  26. Goulet, M.-A., Khorasany, R.M.H., De Torres, C., Lauritzen, M., Kjeang, E., Wang, G.G. and Rajapakse, R.K.N.D., Mechanical Properties of Catalyst Coated Membranes for PEM Fuel Cells, Journal of Power Sources, 2013, 234: 38-47.


Workshops

Back to top

© Concordia University