Skip to main content

Misra Research Group

Dr. Misra and Dr. Madhur Srivastava in Quebéc, Canada on the 26th of July 2017 Dr. Misra presenting his group's work alongside Dr. Madhur Srivastava in Quebec city, Canada on the 26th of July 2017.

The Misra research group specializes in electron paramagnetic resonance (EPR) spectroscopy which spans from analyzing samples, often by collaborating with other researchers at prominent research centres, to developing the technology itself.

The laboratory is equipped with an X-band (~9.5 GHz) and Q-band (~35 GHz) CW (continuous wave) EPR spectrometers, operating in the 4.2 – 1000 K temperature range. The group analyzes a variety of samples from biological, crystals, nano-materials and high temperature superconductors to name a few.

An example of a current project involves using EPR to understand how proteins evolved to bind with manganese, a critical aspect of photosystem II which allows photosynthesis to occur.

Research areas covered:

  • Continuous Wave (CW) and pulsed Electron paramagnetic resonance (EPR, also known as electron spin resonance – ESR, electron magnetic resonance - EMR) at variable frequencies,
  • Computational techniques in EPR,
  • Optically-detected Magnetic Resonance (ODMR),
  • Theoretical application of percolation technique to EPR linewidth calculation,
  • Electron spin-lattice relaxation,
  • EPR study of phase transitions high-Tc superconductors, metalloproteins, nano-systems in ceramics and dilute magnetic semiconductors,
  • Simulations on EPR of slow tumbling of biradicals (CW and Pulsed ELDOR – electron-electron double resonance),
  • Pulsed EPR of Double Quantum coherence (DQC) and Pulsed EPR of Double Electron-Electron Resonance (DEER) for distance measurements in biological systems,
  • Application of Monte-Carlo technique to magnetic resonance phenomena; Simulation and fitting of EPR spectra of transition metal ions in disordered systems and
  • EPR spectra of oxygen-evolving complex (OEC).
Dr. Misra at EUROMAR in Frankfurt, Germany, on the 26th of June 2011 Dr. Misra presenting his group's work at EUROMAR in Frankfurt, Germany on the 26th of June 2011.

Principal investigator

Sushil Misra

Sushil Misra, Ph.D.
Professor, Physics

Email: sushil.misra@concordia.ca

Current members

Ali Samaei
Ali Samaei

M.Sc. student (co-supervised with Dr. Laszo Kalman)
Metal binding to native and mutant bacterial reaction centers

Lin Lee

Ph.D. student

Hamid Reza Salahi
Hamid Reza Salahi

Ph.D. student
Pulsed EPR studies of the instantaneous diffusion between intermolecular spins and many-body effects of the nuclear spins on the electron spin

Email: hamidreza.salahi@concordia.ca

Alumni

  • Alsawafta, Mohammed (2012), Ph.D.
    Optical properties of metallic nanoparticles and metallic nanocomposite materials
  • Rinaldi, Gino (2001), M.Sc.
    An X- and Q-band electron paramagnetic resonance study of Mn²⁺ in a single crystal of NH4Cl0.9I0.1 in the temperature range 77-295 K
  • Sun, Jiansheng (1991), Ph.D.
    Electron paramagnetic resonance studies of single crystals of Mn2+-doped (NH4)2SO4, Gd3+-doped NH4Pr(SO4)2·4H2O, VO2+-doped M(NH2)2(SO4)2·6H2O (M = Cd, Co, Fe, Mg, Zn) and Mg(ND4)2(SO4)2·6D2O, and Cu2+-doped MNa2(SO4)2·4H2O (M = Co, Mg)
  • Orhun, Ufuk (1991), Ph.D.
    Electron paramagnetic resonance linewidth and spin-lattice relaxation in single crystals: presence of dissimilar spins, application of site percolation and percolation-limited diffusion
  • Wang, Chunzheng (1990), Ph.D.
    Electron paramagnetic resonance and optical-absorption studies on Cu2+ impurity in single/poly crystals of hydrated monopyrazine zinc sulphate, (cadmium, nickel, magnesium)-ammonium sulphate, and magnesium acetate

X-band (~9.5 GHz) and Q-band (~35 GHz) CW (continuous wave) EPR spectrometers, operational in the 4.2 – 1000 K temperature range

EPR spectrometer The Misra Group's EPR spectrometer.

Books and book chapters

  • 282. S. K. Misra and S. I. Andronenko, A review of EPR studies on magnetization of nanoparticles of dilute magnetic semiconductors doped by transition-metal ions, Materials Today, Proceedings 00(2017) 0000-0000 (Peer-reviewed Conference Proceedings, ICN3i_2017)
  • 280. S. K. Misra and S. I. Andronenko, EPR and FMR of SiCN ceramics and SiCN magnetic derivatives, Chap. 10, Frontiers in magnetic Resonance: EPR in Modern carbon based nanomaterials, 2017. D. Savchenko and Abdel Hadi Kassiba, Eds., Bentham Science Publishers (Book Chapter)
  • 279. S. K. Misra, Fundamentals of Electron Paramagnetic Resonance in Modern Carbon-based Materials, Chap. 1, Frontiers in magnetic Resonance: EPR in Modern carbon based nanomaterials, 2017, 8-40. D. Savchenko and Abdel Hadi Kassiba, Eds., Bentham Science Publishers (Book Chapter)
  • 278. Quantum Computing/Quantum Information Processing in view of Electron Magnetic /Electron Paramagnetic Resonance Technique/Spectroscopy, to be published in Electron Spin Quantum Computing: Electron Spin-Qubit Based Quantum Computing and Quantum Information Processing, Biological Magnetic Resonance Vol. 31 (2016)
  • 275. Quantum Computing/Quantum Information Processing in view of Electron Magnetic /Electron Paramagnetic Resonance Technique/Spectroscopy, to be published in Electron Spin Quantum Computing: Electron Spin-Qubit Based Quantum Computing and Quantum Information Processing, Biological Magnetic Resonance Vol. 31 (2014)
  • 270. “Multifrequency Electron Paramagnetic Resonance: Data and Techniques”, Edited by S. K. Misra, April 2014. with a long chapter on “Multifrequency Transition-Metal ion Data Tabulation, covering the period of 20 years (1993-2012), (Wiley-VCH, Berlin, Germany).

Papers published in peer-reviewed journals



  • 287. S.K. Misra, H.R. Salahi. 2019. A rigorous calculation of pulsed EPR SECSY and Echo-ELDOR Signals: Inclusion of Static Hamiltonian and Relaxation during pulses, Journal of Applied and Theoretical Research J. Apl. Theol. 3(2), 2019, 9-48 (2019) 
  • 286. S.K. Misra, H.R. Salahi, and L. Li. Calculation of single crystal and polycrystalline pulsed EPR signals including relaxation by phonon modulation of hyperfine and g matrices by solving Liouville von Neumann equation, Magnetic Resonance in Solids, 21, paper #19505 (2019) 16 pages.
  • 285. S.K. Misra, S.I. Andronenko, 2019. A Variable Temperature EPR study of  Cu2+ -doped single crystals of pyrovanadates β-Mg2V2O7, α-Zn2V2O7: estimation of g2 and A2 Tensors, Magn. Reson. Solids 21 (5), 19502, 1-11 (11 pages)
  • 284. S. K. Misra, S. I. Andronenko, Ildar Gilmutdinov, and Roman Yusupov. September 2018. EPR and magnetization studies of polymer-derived Fe-doped SiCN nanoceramics annealed at various temperatures: Blocking temperature, superparamagnetism and size distributions, Appl. Magn. Reson. 49, 1397-1415;doi,org/s00723-1079.x 
  • 283. S.K. Misra, S.I. Andronenko, 2018. EPR of the V4+ ion in single crystals of pyrovanadates β-Mg2V2O7, α-Zn2V2O7: Spin-Hamiltonian Parameters, Magn. Reson. Solids 20, 18101 (8 pages)
  • 282. S.K. Misra and L. Li, 2018, A Rigorous Procedure for Calculation of Pulsed EPR Signal with Relaxation, J. Apl. Theol 2(1): 5-16.doi.org/10.24218/jatpr.2018.14
  • 281. S.I. Andronenko, A.A. Rodionov, S.K. Misra, 2018. A Variable Temperature X- and W-Band EPR Study of Fe-Doped SiCN Ceramics Annealed at 1000, 1100, and 1285 °C: Dangling Bonds, Ferromagnetism and Superparamagnetism, Applied Magnetic Resonance, 49, iss. 4, pp.335-344 doi:10.1007/s00723-017-0973-y
  • 277. S.K. Misra, S.I.Andronenko, D.Tipikin, J.H.Freed , V.Somani, Om Prakash,2016, Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature X-band and high-frequency (236GHz) EPR, J. of Magn. and Magn. Mat.401,495–505.
  • 276. Sushil K. Misra . Lin Li . Sudip Mukherjee .Goutam Ghosh, 2015. Anisotropic magnetic field observed at 300 K in citrate coatediron oxide nanoparticles: effect of counterionsJ Nanopart Res (2015) 17:487 (11 pages)
  • 275. S. K. Misra and C. Z. Rudowicz, 2015, Concepts of zero-field splitting Hamiltonian (HZFS), crystal-field Hamiltonian (HCF), effective and fictitious spins, EPR Newsletter 25, 24-28.
  • 274. S. K. Misra, S. A. Andronenko, A. Thurber, and A. Punnoose, 2015. An X-band Co2+ EPR Study of Zn1-xCoxO (x =0.005 – 0.1) nanoparticles prepared by chemical hydrolysis methods using diethylene glycol and denaturated alcohol at 5 K, Journal of Magnetism and MagneticMaterials 394, 138–142
  • 273. S. A. Andronenko and S. K. Misra, 2015. A review of EPR studies on magnetization of nanoparticles of dilute magnetic semiconductors doped by transition-metal ions, Applied Magnetic Resonance, 46, 693–707.
  • 272. Spin-lattice relaxation, phase transitions and spin-Hamiltonian parameters of a Gd3+-doped Y(BrO3)3·9H2O single crystal as studied by electron paramagnetic resonance, S. K. Misra and Lin Li, Applied Magnetic Resonance. doi:10.1007/s00723-015-0706-z.
  • 271. S.K. Misra and A. Michaels, 2015, High frequency (208 GHz) determination of the cubic spin Zeeman term for the U3+ ion in the dilute magnetic semiconductor crystals of Pb1-xUxTe and Pb1-xUxSe at 5K by Electron Paramagnetic Resonance, J. Magn. & Magn Mat. 378, 170–173.
  • 269. S. K. Misra, S. I. Andronenko, A. Thurber, A. Punnoose, and A. Nalepa, 2014. An X- and Q-band Fe3+ EPR Study of Nanoparticles of Magnetic Semiconductor Zn1-xFexO, J. Magn. Magn. Mat. 363, 82–87.
  • 268. S. K. Misra, S. I. Andronenko, J. D. Harris, A. Thurber, G. L. Beausoleil II and A. Punnoose, April 2013, Ferromagnetism in Annealed Ce0.95Co0.05O2 and Ce0.95Ni0.05ONanoparticles, J. Nanosci. Nanotechnol. 13, 6798-6805 (2013).
  • 267. Anand Prakash, S. K. Misra, and D. Bahadur, The role of reduced graphene oxide capping on defect induced ferromagnetism of ZnO nanorods, Nanotechnology 24, 095705 (2013) (10pp)
  • 266. Thomas Lohmiller, William Ames, Nicholas Cox, Wolfgang Lubitz, and Sushil K. Misra, EPR Spectroscopy and Electronic Structure of the Oxygen-Evolving Complex of Photosystem II, Applied Magnetic Resonance 44, 691-720 (2013).
  • 265. S.I. Andronenko, A.A. Rodionov, A.V. Fedorova, S.K. Misra, Electron Paramagnetic Resonance study of (La0.33Sm0.67)0.67Sr0.33-xBaxMnO3 (x<0.1): Griffith’s phase, J. Magn. Magn. Materials. 326, 151-156 (2013)
  • 264. S. K. Misra and B. Regler, 2012, A low temperature (10 K) high-frequency (208 GHz) EPR-Study of the non-Kramers ion Mn3+ in a MnMo6Se8 single crystal, Applied Magnetic Resonance. doi:10.1007/s00723-017-0973-y
  • 263. S.K. Misra, and S. Diehl, 2012 “Theory of EPR lineshape in samples concentrated in paramagnetic spins: Effect of enhanced internal magnetic field on high-field high-frequency (HFHF) EPR lineshape” J. Magn. Reson. 219, 53-60.
  • 262. S. I. Andronenko, R. R. Andronenko, S. K. Misra. 2012, An X- and Q-band Gd3+ EPR study of a single crystal of EuAlO3: EPR linewidth variation with temperature and low-symmetry effects, Physica B 407, 1203-1208.
  • 261. M. Alsawafta, M. Wahbeh, S.K. Misra, Vo-Van Truong, 2011 “Effect of Target Size on the Optical Response of Ultrafine Metallic Spherical Particles Arranged in a Two-Dimensional Array”, Proc. SPIE 8007, 80071H (2011); doi:10.1117/12.905099
  • 260. M. Wahbeh, M. Alsawafta, S.K. Misra, Vo-Van Truong, 2011 “Optical Properties of Two-Dimensional and Three-Dimensional Arrays of Noble Metal Nanoparticles by the Discrete Dipole Approximation Method”, Proc. SPIE 8007, 80071I (2011); doi:10.1117/12.905102. Conference Proceedings
  • 259-243. S. K. Misra, 2011. Multifrequency Electron Paramagnetic Resonance: Theory and Applications, Wiley-VCH, Weinheim, Germany, 2011) I edited this book, as well as wrote the following 16 chapters (reviewed by peers): publication numbers 244. – 259:
  • 259.  Chapter 26: Future Perspectives (S. Misra)
  • 258. Chapter 23: Measurement of Superconducting Gaps (S. Misra)
  • 257. Chapter 22: Multifrequency EPR of Photosynthetic Systems (S. Misra, K. Moebius, A. Savitsky)
  • 256. Chapter 21: Single Molecule Magnets and Magnetic Quantum Tunneling (S. Misra)
  • 255. Chapter 14: Determination of non-coincident anisotropic   tensors (S. Misra)
  • 254. Chapter 13: Determination of large Zero Field Splitting (S. Misra)
  • 253. Chapter 12: Distance Measurements: CW and Pulse Dipolar EPR (S. Misra & J. Freed)
  • 252. Chapter 11: Molecular Motions (S. Misra & J. Freed)
  • 251. Chapter 10: Relaxation of Paramagnetic Spins (S. Misra)
  • 250. Chapter 9: Simulation of EPR Spectra (S. Misra)
  • 249. Chapter 8:  Evaluation of Spin Hamiltonian Parameters from Multifrequency EPR Data (S. Misra)
  • 248. Chapter 7: Spin Hamiltonians and Site Symmetries for Transition Ions (S. Misra)
  • 247. Chapter 4: Spectrometers; Section 4.1 Zero-field EPR (S. Misra)
  • 246. Chapter 3 Basic Theory of EPR (S. Misra)
  • 245. Chapter 2 Multifrequency Aspects of EPR (S. Misra)
  • 244. Chapter 1: Introduction (S. Misra)
  • 242.   S.I. Andronenko, A. Leo, I. Stiharu, D. Menard, C. Lacroix, and S. K. Misra, 2010. EPR/FMR investigation of Mn-doped SiCN ceramics, Appl. Magn. Reson. 39, 347-356
  • 241.   S.I. Andronenko, I. Stiharu, D. Menard, C. Lacroix, and S. K. Misra, 2010.    EPR/FMR investigation of Fe doped SiCN ceramics, Appl. Magn. Reson. 38, 385-402.
  • 240.    S. K. Misra, S. I. Andronenko, S. Asthana, and D. Bahadur, 2010. A variable temperature EPR study of the manganites (La1/3Sm2/3)2/3SrxBa0.33xMnO3, (x = 0.0, 0.1, 0.2, 0.33): Small polaron hopping conductivity and Griffiths phase, Journal of Magnetism and Magnetic Materials 322, 2902–2907.
  • 239.   Sushil K. Misra, Stefan Diehl, Dmitry Tipikin, and Jack H. Freed, 2010. A Multifrequency EPR study of Fe2+ and Mn2+ in a ZnSiF6.6H2O single crystal at liquid-helium temperatures, J. Magn. Reson. 205, 14-22.
  • 238. A. Punnoose, K.M. Reddy, J. Hayes, A. Thurber, S. Andronenko, S.K. Misra, 2009. Dopant states and Magnetic Interactions in Sn1-xFexO2: Effect of dopant concentration and preparation, Appl. Magn. Reson. 36, 331-345. 
  • 237.S. K. Misra, S. I. Andronenko, A. Punnoose, D. Tipikin, and J. H. Freed, 2009. A 236-GHz Fe3+ EPR study of nano-particles of the ferromagnet  room-temperature semiconductor Sn1-xFexO2 (x=0.005), Appl. Magn. Reson. 36, 291-295. 
  • 236. S. K. Misra, P. P. Borbat, and J. H. Freed, 2009. Rigorous calculation of 6-pulse double quantum coherence (DQC) two-dimensional signal in Hilbert space: Distance measurements and orientational correlations, Appl. Magn. Reson. 36, 237-258. 
  • 235. S. K. Misra, 2009. Use of homotopy technique to achieve better than an order of magnitude computational efficiency in simulation of polycrystalline magnetic resonance spectra. J. Appl. Glob. Res. 2, 38-45.
  • 234. S. K. Misra, S. I. Andronenko, S. Rao, S. V. Bhat, C. Van Komen, and A. Punnoose, 2009. Cr3+ electron paramagnetic resonance study of Sn1-xCrxO2 (0.00 ≤ x ≤ 0.10), J. App. Phys. 105, 07C514-1 – 07C514-3.
Back to top

© Concordia University