Maiti Research Group

The Maiti Research Group focuses on the collective phenomena and quantum phases in low-dimensional systems. More specifically, our research interests include:

  • Collective phenomena,
  • Spin-orbit coupled systems,
  • Unconventional superconductors,
  • Correlated electronic systems and
  • Gauge fields in lattice systems.

We are interested in studying low-dimensional systems like the lattice of Graphene, Kagome etc. (which are strictly 2D); and Fe and Cu based superconductors (which are quasi-2D). These systems can host a range of quantum phases like spin-liquid, unconventional superconductivity, magnetism, density waves, or any combination of them. We are also interested in understanding the role of various gauge fields in systems with a degenerate energy excitation spectrum.

Accounting for electronic correlations, we also look for unique signatures of the collective phenomena in such quantum phases. Some examples of such signatures are chiral-spin waves in spin-orbit coupled systems that can have potential application in Spintronics/Magnonics; and collective modes in superconductors that can provide insight into the pairing mechanism of high-Tc superconductors. We also work on computing experimentally observable quantities (like Raman, optical absorption spectrum) that can help detect these signatures and track the boundaries between various phases.

Principal investigator

Saurabh Maiti
Saurabh Maiti

Assistant Professor, Physics

Current members

Igor Benek Lins

Ph.D. student

Jun Hyung Bae

Ph.D. student

Colton Lelievre

B.Sc. student

Jonathan Discenza

B.Sc. student

Joshua Emmerson

B.Sc. student

Past members

Jeremie Mede Moussa
Jeremie Mede Moussa

B.Sc. student

  1. Maiti, S. & Sedrakyan, T. A. Composite fermion state of graphene as a Haldane-Chern insulator. Phys. Rev. B 100, 125428 (2019). doi:10.1103/PhysRevB.100.125428
  2. Maiti, S. & Sedrakyan, T. Fermionization of bosons in a flat band. Phys. Rev. B 99, 174418 (2019). doi:10.1103/PhysRevB.99.174418
  3. Böhm, T., Kretzschmar, F., Baum, A., Rehm, M., Jost, D., Hosseinian Ahangharnejhad, R., Thomale, R., Platt, C., Maier, T. A., Hanke, W., Moritz, B., Devereaux, T. P., Scalapino, D. J., Maiti, S., Hirschfeld, P. J., Adelmann, P., Wolf, T., Wen, H.-H. & Hackl, R. Microscopic origin of Cooper pairing in the iron-based superconductor Ba1−xKxFe2As2. npj Quantum Materials 3, 48 (2018). doi:10.1038/s41535-018-0118-z
  4. Maiti, S. & Maslov, D. L. Raman scattering in a two-dimensional Fermi liquid with spin-orbit coupling. Phys. Rev. B 95, 134425 (2017). doi:10.1103/PhysRevB.95.134425
  5. Maiti, S., Chubukov, A. V. & Hirschfeld, P. J. Conservation laws, vertex corrections, and screening in Raman spectroscopy. Phys. Rev. B 96, 014503 (2017). doi:10.1103/PhysRevB.96.014503
  6. Kung, H.-H., Maiti, S., Wang, X., Cheong, S.-W., Maslov, D. L. & Blumberg, G. Chiral Spin Mode on the Surface of a Topological Insulator. Phys. Rev. Lett. 119, 136802 (2017). doi:10.1103/PhysRevLett.119.136802
  7. Maiti, S., Imran, M. & Maslov, D. L. Electron spin resonance in a two-dimensional Fermi liquid with spin-orbit coupling. Phys. Rev. B 93, 045134 (2016). doi:10.1103/PhysRevB.93.045134
  8. Maiti, S., Maier, T. A., Böhm, T., Hackl, R. & Hirschfeld, P. J. Probing the Pairing Interaction and Multiple Bardasis-Schrieffer Modes Using Raman Spectroscopy. Phys. Rev. Lett. 117, 257001 (2016). doi:10.1103/PhysRevLett.117.257001
  9. Linscheid, A., Maiti, S., Wang, Y., Johnston, S. & Hirschfeld, P. J. High T_c via Spin Fluctuations from Incipient Bands: Application to Monolayers and Intercalates of FeSe. Phys. Rev. Lett. 117, 077003 (2016). doi:10.1103/PhysRevLett.117.077003
  10. Lin, S.-Z., Maiti, S. & Chubukov, A. Distinguishing between s+id and s+is pairing symmetries in multiband superconductors through spontaneous magnetization pattern induced by a defect. Phys. Rev. B 94, 064519 (2016). doi:10.1103/PhysRevB.94.064519
  11. Cho, K., Kończykowski, M., Teknowijoyo, S., Tanatar, M. A., Liu, Y., Lograsso, T. A., Straszheim, W. E., Mishra, V., Maiti, S., Hirschfeld, P. J. & Prozorov, R. Energy gap evolution across the superconductivity dome in single crystals of (Ba1-xKx)Fe2As2. Science Advances 2, (2016). doi:10.1126/sciadv.1600807
  12. Chen, X., Mishra, V., Maiti, S. & Hirschfeld, P. J. Effect of nonmagnetic impurities on superconductivity in the presence of incipient bands. Phys. Rev. B 94, 054524 (2016). doi:10.1103/PhysRevB.94.054524
  13. Maiti, S., Zyuzin, V. & Maslov, D. L. Collective modes in two- and three-dimensional electron systems with Rashba spin-orbit coupling. Phys. Rev. B 91, 035106 (2015). doi:10.1103/PhysRevB.91.035106
  14. Maiti, S., Sigrist, M. & Chubukov, A. Spontaneous currents in a superconductor with s+is symmetry. Phys. Rev. B 91, 161102 (2015). doi:10.1103/PhysRevB.91.161102
  15. Maiti, S. & Maslov, D. L. Intrinsic Damping of Collective Spin Modes in a Two-Dimensional Fermi Liquid with Spin-Orbit Coupling. Phys. Rev. Lett. 114, 156803 (2015). doi:10.1103/PhysRevLett.114.156803
  16. Maiti, S. & Hirschfeld, P. J. Collective modes in superconductors with competing s- and d-wave interactions. Phys. Rev. B 92, 094506 (2015). doi:10.1103/PhysRevB.92.094506
  17. Chen, X., Maiti, S., Linscheid, A. & Hirschfeld, P. J. Electron pairing in the presence of incipient bands in iron-based superconductors. Phys. Rev. B 92, 224514 (2015). doi:10.1103/PhysRevB.92.224514
  18. VanGennep, D., Maiti, S., Graf, D., Tozer, S. W., Martin, C., Berger, H., Maslov, D. L. & Hamlin, J. J. Pressure tuning the Fermi level through the Dirac point of giant Rashba semiconductor BiTeI. Journal of Physics: Condensed Matter 26, 342202 (2014). doi:10.1088/0953-8984/26/34/342202
  19. Maiti, S. & Chubukov, A. V. Superconductivity from repulsive interaction. in Lectures on the Physics of Strongly Correlated Systems XVII (eds. Avella, A. & Mancini, F.) 1550, 3–73 (2013). ISBN 978-0-7354-1175-3
  20. Fernandes, R. M., Maiti, S., Wölfle, P. & Chubukov, A. V. How Many Quantum Phase Transitions Exist Inside the Superconducting Dome of the Iron Pnictides? Phys. Rev. Lett. 111, 057001 (2013). doi:10.1103/PhysRevLett.111.057001
Back to top

© Concordia University