Concordia University

https://www.concordia.ca/content/concordia/en/artsci/physics/research/bianucci-research.html

Bianucci Research Group

Our research is mostly based on optical microresonators, microscopic structures that can maintain light confined within them. We interrogate them using optical fibers (that have been tapered to a diameter comparable to the wavelength of near-infrared light) and free-space lasers.

Some of the projects we are interested in are:

  • Studying the optical properties of nanomaterials coupled to microresonators.
  • Designing and implementing micro- and nanophotonics devices.
  • Investigating ultra-sensitive biosensors (in collaboration with Microphotonics Laboratory at Ecole Polytechnique de Montreal).
  • Fast and slow light in microresonators.
  • Solid-state quantum optics.
group

Principal Investigator

This is an image of Marc Collette

Pablo Bianucci, Ph.D
pablo.bianucci@concordia.ca

Graduate Students

IMG_4985-2

Tabassom Hamidfar, Ph. D. student
E-mail: t_hamidf@live.concordia.ca
Fabrication and Characterization of Surface Nanoscale Axial Photonics Microresonator

 

KathleenML

Kathleen McGarvey-Lechable, Ph. D. student
E-mail: k_mcgarv@live.concordia.ca
Topological Silicon Photonics

Mathieu

Mathieu Couillard, M.Sc student
E-mail: mathieu.couillard@mail.concordia.ca
Development and characterization of packaged optical microresonators

Rajni

Rajni Bagga, M.Sc. student
E-mail: rajnibagga2803@gmail.com
Hydrothermal Growth of Mn-doped Semiconductor Nanostructures

Undergraduate students

Amalia Sanabria Lopez-Silvero
Erin Stigall
Jefferey Morais

Alumni

Mohammad Javad Safdari, M.Sc. Passive photonics crystal devices
Amir Hassanpour, Ph. D., Growth and fabrication of ZnO optical microresonators
Arvind Gupta, B.Sc.
Matias Rittatore, B.Sc.
Alexandra Trempe, B.Sc.
Nathan Yee, B.Sc., Growth of ZnO nanowires (SCOL 290)
Dhan Cardinal, B.Sc., Resonant modes of periodic structures
Costa Papadatos B.Sc., Fabrication of tapered optical fibers

 

20180803_124858
Optical table

ST-UT2 optical table with active vibration damping

20180803_124330
Fiber Taper set up

Fully computer controlled

20180803_124557
Optical Device Characterization

Tektronix MDO 4034-3 oscilloscope
Photonetics Tunics-Plus tunable from 1430-1640nm

20180803_124934
Micro Photoluminescence

Low temperature capability
369nm continuous wave laser
50cm triple grating Czerny-Turner spectrograph with a EMCCD imaging camera

20180803_125159
Chemical hood vent

DLP 3D Printer

Thermolyne 1300 Furnace

Clad alignment fusion splicer

Elga Purelab Flex water purifier

  1. McGarvey-Lechable, K. & Bianucci, P. Bloch-Floquet waves in optical ring resonators. Phys. Rev. B 97, 214204 (2018).

  2. Safdari, M. J., Mirjalili, S. M., Bianucci, P. & Zhang, X. Multi-objective optimization framework for designing photonic crystal sensors. Appl. Opt., AO 57, 1950–1957 (2018).

  3. Hassanpour, A., Shen, S. & Bianucci, P. Sodium-doped oriented zinc oxide nanorod arrays: insights into their aqueous growth design, crystal structure, and optical properties. MRS Communications 1–7 (2018). doi:10.1557/mrc.2018.45

  4. Hamidfar, T., Dmitriev, A., Mangan, B., Bianucci, P. & Sumetsky, M. Surface nanoscale axial photonics at a capillary fiber: publisher’s note. Optics Letters 42, 4828 (2017).

  5. Hamidfar, T. et al. Localization of Light in an Optical Microcapillary Introduced by a Droplet. (2017).

  6. Hassanpour, A., Guo, P., Shen, S. & Bianucci, P. The Effect of Cation Doping on the Morphology, Optical and Structural Properties of Highly Oriented Wurtzite ZnO-Nanorod Arrays Grown by a Hydrothermal Method. Nanotechnology 28, 435707 (2017).

  7. Hamidfar, T., Dmitriev, A., Magdan, B., Bianucci, P. & Sumetsky, M. Surface Nanoscale Axial Photonics at a Capillary Fiber. Optics Letters 42, 3060 (2017).

  8. Hassanpour, A., Bogdan, N., Capobianco, J. A. & Bianucci, P. Hydrothermal Selective Growth of Low Aspect Ratio Isolated ZnO Nanorods. Materials & Design 119, 464–469 (2017).

  9. Ghali, H., Bianucci, P. & Peter, Y.-A. Wavelength Shift in a Whispering Gallery Microdisk Due to Bacterial Sensing: A Theoretical Approach. Sensing and Bio-Sensing Research 13, 9–16 (2017).

  10. McGarvey-Lechable, K. et al. Slow Light in Mass-Produced, Dispersion-Engineered Photonic Crystal Ring Resonators. Optics Express 25, 3916 (2017).

  11. Bianucci, P. Optical Microbottle Resonators for Sensing. Sensors 16, 1841 (2016).

  12. Ghali, H., Chibli, H., Nadeau, J., Bianucci, P. & Peter, Y.-A. Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks. Biosensors 6, 20 (2016).

  13. McGarvey-Lechable, K. & Bianucci, P. Maximizing Slow-Light Enhancement in One-Dimensional Photonic Crystal Ring Resonators. Optics Express 22, 26032 (2014).

  14. Bianucci, P. et al. Optically Pumped Rolled-up InAs/InGaAsP Quantum Dash Lasers at Room Temperature. SEMICONDUCTOR SCIENCE AND TECHNOLOGY 28, (2013).

  15. Tian, Z., Bianucci, P. & Plant, D. V. Fiber Ring Laser Using Optical Fiber Microdisk as Reflection Mirror. IEEE Photonics Technology Letters 24, 1396–1398 (2012).

  16. Bianucci, P., Mukherjee, S., Dastjerdi, M. H. T., Poole, P. J. & Mi, Z. Self-Organized InAs/InGaAsP Quantum Dot Tube Lasers. Applied Physics Letters 101, 031104 (2012).

  17. Tian, Z. et al. Dynamical Thermal Effects in InGaAsP Microtubes at Telecom Wavelengths. OPTICS LETTERS 37, 2712–2714 (2012).

  18. Mi, Z. & Bianucci, P. When Self-Organized In(Ga)As/GaAs Quantum Dot Heterostructures Roll up: Emerging Devices and Applications. Current Opinion in Solid State and Materials Science 16, 52–58 (2012).

  19. Bianucci, P. et al. Selective Polarization Mode Excitation in Ingaas/Gaas Microtubes. OPTICS LETTERS 36, 3506–3508 (2011).

  20. Bianucci, P. et al. Single Rolled-up InGaAs/GaAs Quantum Dot Microtubes Integrated with Silicon-on-Insulator Waveguides. OPTICS EXPRESS 19, 12164–12171 (2011).

Back to top

© Concordia University