Our research is mostly based on optical microresonators, microscopic structures that can maintain light confined within them. We interrogate them using optical fibers (that have been tapered to a diameter comparable to the wavelength of near-infrared light) and free-space lasers.
Some of the projects we are interested in are
Studying the optical properties of nanomaterials,
Designing and implementing micro-and nanophotonics devices,
Khattak, H. K., Bianucci, P. & Slepkov, A. D. Linking plasma formation in grapes to microwave resonances of aqueous dimers. Proc Natl Acad Sci USA116, 4000–4005 (2019). doi:10.1073/pnas.1818350116
McGarvey-Lechable, K. & Bianucci, P. Bloch-Floquet waves in optical ring resonators. Phys. Rev. B97, 214204 (2018). doi:10.1103/PhysRevB.97.214204
Hassanpour, A., Shen, S. & Bianucci, P. Sodium-doped oriented zinc oxide nanorod arrays: insights into their aqueous growth design, crystal structure, and optical properties. MRC8, 570–576 (2018). doi:10.1557/mrc.2018.45
Hamidfar, T. et al. Localization of light in an optical microcapillary induced by a droplet. Optica5, 382 (2018). doi:10.1364/OPTICA.5.000382
Safdari, M. J., Mirjalili, S. M., Bianucci, P. & Zhang, X. Multi-objective optimization framework for designing photonic crystal sensors. Appl. Opt.57, 1950 (2018). doi:10.1364/AO.57.001950
Hassanpour, A., Guo, P., Shen, S. & Bianucci, P. The effect of cation doping on the morphology, optical and structural properties of highly oriented wurtzite ZnO-nanorod arrays grown by a hydrothermal method. Nanotechnology28, 435707 (2017). doi:10.1088/1361-6528/aa849d
Hamidfar, T., Dmitriev, A., Magdan, B., Bianucci, P. & Sumetsky, M. Surface nanoscale axial photonics at a capillary fiber. Opt. Lett.42, 3060 (2017). doi:10.1364/OL.42.003060
Hassanpour, A., Bogdan, N., Capobianco, J. A. & Bianucci, P. Hydrothermal selective growth of low aspect ratio isolated ZnO nanorods. Materials & Design119, 464–469 (2017). doi:10.1016/j.matdes.2017.01.089
Ghali, H., Bianucci, P. & Peter, Y.-A. Wavelength shift in a whispering gallery microdisk due to bacterial sensing: A theoretical approach. Sensing and Bio-Sensing Research13, 9–16 (2017). doi:10.1016/j.sbsr.2017.01.004
McGarvey-Lechable, K. et al. Slow light in mass-produced, dispersion-engineered photonic crystal ring resonators. Opt. Express25, 3916 (2017). doi:10.1364/OE.25.003916
Bianucci, P. Optical Microbottle Resonators for Sensing. Sensors16, 1841 (2016). doi:10.3390/s16111841
Ghali, H., Chibli, H., Nadeau, J., Bianucci, P. & Peter, Y.-A. Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks. Biosensors6, 20 (2016). doi:10.3390/bios6020020
McGarvey-Lechable, K. & Bianucci, P. Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators. Opt. Express22, 26032 (2014). doi:10.1364/OE.22.026032
Dastjerdi, M. H. T. et al. Optically pumped rolled-up InAs/InGaAsP quantum dash lasers at room temperature. Semicond. Sci. Technol.28, 094007 (2013). doi:10.1088/0268-1242/28/9/094007
Tian, Z., Bianucci, P. & Plant, D. V. Fiber Ring Laser Using Optical Fiber Microdisk as Reflection Mirror. IEEE Photon. Technol. Lett.24, 1396–1398 (2012). doi:10.1109/LPT.2012.2204244
Bianucci, P., Mukherjee, S., Dastjerdi, M. H. T., Poole, P. J. & Mi, Z. Self-organized InAs/InGaAsP quantum dot tube lasers. Appl. Phys. Lett.101, 031104 (2012). doi:10.1063/1.4737425
Tian, Z. et al. Dynamical thermal effects in InGaAsP microtubes at telecom wavelengths. Opt. Lett.37, 2712 (2012). doi:10.1364/OL.37.002712
Mi, Z. & Bianucci, P. When self-organized In(Ga)As/GaAs quantum dot heterostructures roll up: Emerging devices and applications. Current Opinion in Solid State and Materials Science16, 52–58 (2012). doi:10.1016/j.cossms.2011.09.001
Tian, Z. et al. Selective polarization mode excitation in InGaAs/GaAs microtubes. Opt. Lett.36, 3506 (2011). doi:10.1364/OL.36.003506
Tian, Z. et al. Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides. Opt. Express19, 12164 (2011). doi:10.1364/OE.19.012164
Contact information
Please contact Dr. Bianucci by phone or email if you have any questions or need his assistance.
Concordia University uses technical, analytical, marketing and preference cookies. These are necessary for our site to function properly and to create the best possible online experience.