Skip to main content


Bianucci Research Group

Our research is mostly based on optical microresonators, microscopic structures that can maintain light confined within them. We interrogate them using optical fibers (that have been tapered to a diameter comparable to the wavelength of near-infrared light) and free-space lasers.

Some of the projects we are interested in are

  • Studying the optical properties of nanomaterials,
  • Designing and implementing micro-and nanophotonics devices,
  • Topological photonics,
  • Using microresonators for sensing and
  • Microresonators and quantum optics.
Optical table
Optical table

ST-UT2 optical table with active vibration damping

Fiber taper
Fiber Taper set up

Fully computer controlled

Optical device characterization
Optical Device Characterization

Tektronix MDO 4034-3 oscilloscope
Photonetics Tunics-Plus tunable from 1430-1640nm

Micro photoluminescence
Micro Photoluminescence

Low temperature capability
369nm continuous wave laser
50cm triple grating Czerny-Turner spectrograph with a EMCCD imaging camera

Chemical hood vent
Chemical hood vent
  • DLP 3D Printer
  • Thermolyne 1300 Furnace
  • Clad alignment fusion splicer
  • Elga Purelab Flex water purifier
  1. Khattak, H. K., Bianucci, P. & Slepkov, A. D. Linking plasma formation in grapes to microwave resonances of aqueous dimers. Proc Natl Acad Sci USA 116, 4000–4005 (2019). doi:10.1073/pnas.1818350116
  2. McGarvey-Lechable, K. & Bianucci, P. Bloch-Floquet waves in optical ring resonators. Phys. Rev. B 97, 214204 (2018). doi:10.1103/PhysRevB.97.214204
  3. Hassanpour, A., Shen, S. & Bianucci, P. Sodium-doped oriented zinc oxide nanorod arrays: insights into their aqueous growth design, crystal structure, and optical properties. MRC 8, 570–576 (2018). doi:10.1557/mrc.2018.45
  4. Hamidfar, T. et al. Localization of light in an optical microcapillary induced by a droplet. Optica 5, 382 (2018). doi:10.1364/OPTICA.5.000382
  5. Safdari, M. J., Mirjalili, S. M., Bianucci, P. & Zhang, X. Multi-objective optimization framework for designing photonic crystal sensors. Appl. Opt. 57, 1950 (2018). doi:10.1364/AO.57.001950
  6. Hassanpour, A., Guo, P., Shen, S. & Bianucci, P. The effect of cation doping on the morphology, optical and structural properties of highly oriented wurtzite ZnO-nanorod arrays grown by a hydrothermal method. Nanotechnology 28, 435707 (2017). doi:10.1088/1361-6528/aa849d
  7. Hamidfar, T., Dmitriev, A., Magdan, B., Bianucci, P. & Sumetsky, M. Surface nanoscale axial photonics at a capillary fiber. Opt. Lett. 42, 3060 (2017). doi:10.1364/OL.42.003060
  8. Hassanpour, A., Bogdan, N., Capobianco, J. A. & Bianucci, P. Hydrothermal selective growth of low aspect ratio isolated ZnO nanorods. Materials & Design 119, 464–469 (2017). doi:10.1016/j.matdes.2017.01.089
  9. Ghali, H., Bianucci, P. & Peter, Y.-A. Wavelength shift in a whispering gallery microdisk due to bacterial sensing: A theoretical approach. Sensing and Bio-Sensing Research 13, 9–16 (2017). doi:10.1016/j.sbsr.2017.01.004
  10. McGarvey-Lechable, K. et al. Slow light in mass-produced, dispersion-engineered photonic crystal ring resonators. Opt. Express 25, 3916 (2017). doi:10.1364/OE.25.003916
  11. Bianucci, P. Optical Microbottle Resonators for Sensing. Sensors 16, 1841 (2016). doi:10.3390/s16111841
  12. Ghali, H., Chibli, H., Nadeau, J., Bianucci, P. & Peter, Y.-A. Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks. Biosensors 6, 20 (2016). doi:10.3390/bios6020020
  13. McGarvey-Lechable, K. & Bianucci, P. Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators. Opt. Express 22, 26032 (2014). doi:10.1364/OE.22.026032
  14. Dastjerdi, M. H. T. et al. Optically pumped rolled-up InAs/InGaAsP quantum dash lasers at room temperature. Semicond. Sci. Technol. 28, 094007 (2013). doi:10.1088/0268-1242/28/9/094007
  15. Tian, Z., Bianucci, P. & Plant, D. V. Fiber Ring Laser Using Optical Fiber Microdisk as Reflection Mirror. IEEE Photon. Technol. Lett. 24, 1396–1398 (2012). doi:10.1109/LPT.2012.2204244
  16. Bianucci, P., Mukherjee, S., Dastjerdi, M. H. T., Poole, P. J. & Mi, Z. Self-organized InAs/InGaAsP quantum dot tube lasers. Appl. Phys. Lett. 101, 031104 (2012). doi:10.1063/1.4737425
  17. Tian, Z. et al. Dynamical thermal effects in InGaAsP microtubes at telecom wavelengths. Opt. Lett. 37, 2712 (2012). doi:10.1364/OL.37.002712
  18. Mi, Z. & Bianucci, P. When self-organized In(Ga)As/GaAs quantum dot heterostructures roll up: Emerging devices and applications. Current Opinion in Solid State and Materials Science 16, 52–58 (2012). doi:10.1016/j.cossms.2011.09.001
  19. Tian, Z. et al. Selective polarization mode excitation in InGaAs/GaAs microtubes. Opt. Lett. 36, 3506 (2011). doi:10.1364/OL.36.003506
  20. Tian, Z. et al. Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides. Opt. Express 19, 12164 (2011). doi:10.1364/OE.19.012164
Back to top Back to top

© Concordia University