Skip to main content

Sodium-ion Battery for Residential Energy Storage Deployment

Key project details

Principal investigator Jeff Dahn, professor, Physics and Atmospheric Science, Dalhousie University

Co-principal investigators

Lukas Swan, professor, Mechanical Engineering, Dalhousie University

Research collaborators

Karim Zaghib, professor, Chemical and Materials Engineering and CEO of Volt-Age, Concordia University; Chongyin Yang, assistant professor and Tesla Canada Chair, Dalhousie University; Michael Metzger, assistant professor, Physics & Atmospheric Science, Dalhousie University; Ruth Sayers, director of Technology, Faradion; Chris Wright, Faradion; Sunny Hy, Tesla
Non-academic partners Tesla, Faradion
Research Keywords Energy storage, renewable energy, sodium-ion battery, off-grid, peak shaving, backup power, electricity resiliency, community energy storage
Budget Cash: $200,000 In-Kind: $190,000

Publications:

W. Black, S. Azam, H. MacLennan, M. Metzger, and J. R. Dahn, “Understanding Capacity Loss in LFP/Graphite Pouch Cells at High Temperatures through Modelling,” J. Electrochem. Soc., vol. 172, no. 9, p. 090503, Sept. 2025, doi: 10.1149/1945-7111/adf5ed

A. Dutta, K. Homlamai, M. B. Johnson, M. Sawangphruk, and J. R. Dahn, “Designing Surface Coating Strategies with Tungsten on Single Crystal NMC Materials by XPS,” Advanced Energy Materials, vol. 15, no. 36, p. e03051, Sept. 2025, doi: 10.1002/aenm.202503051

S. Azam et al., “Impact of Pyrocarbonate Additives and Salt Chemistries (LiFSI and LiPF6 ) on Gassing and Performance in Silicon-Containing Pouch Cells,” J. Electrochem. Soc., vol. 172, no. 9, p. 090529, Sept. 2025, doi: 10.1149/1945-7111/ae0527

S. Yu et al., “Comparing Ni vs NiO as the Nickel Source in the All-Dry Laboratory and Industrial Scale Synthesis of LiNi0.925 Mn0.02 Co0.055 O2,” J. Electrochem. Soc., vol. 172, no. 9, p. 090538, Sept. 2025, doi: 10.1149/1945-7111/ae0885

M. C. Obialor et al., “Impact of Oxide Growth on Lead Negative Electrodes for Sodium-Ion Batteries,” J. Electrochem. Soc., vol. 172, no. 8, p. 080534, Aug. 2025, doi: 10.1149/1945-7111/adfca3

M. D. L. Garayt, I. L. Monchesky, M. C. Obialor, S. Yu, J. R. Dahn, and M. Metzger, “Differential Voltage Analysis of Lead-Containing Sodium-Ion Full Cells,” J. Electrochem. Soc., vol. 172, no. 8, p. 080513, July 2025, doi: 10.1149/1945-7111/adf5ec

E. Oyekola, L. Swan, and J. R. Dahn, “Thermal modeling of a subterranean battery energy storage system for residential and commercial buildings,” Journal of Energy Storage, vol. 123, p. 116803, July 2025, doi: 10.1016/j.est.2025.116803

B. Tang et al., “Dimethyl Sulfite as a Possible Alternative Electrolyte Solvent for Na-Ion Batteries,” J. Electrochem. Soc., vol. 172, no. 8, p. 080509, July 2025, doi: 10.1149/1945-7111/adf5e9

S. Azam et al., “Improving and Understanding Lifetime of LFP/Graphite Pouch Cells with Higher Concentrations of Vinylene Carbonate in the Electrolyte,” J. Electrochem. Soc., vol. 172, no. 7, p. 070523, July 2025, doi: 10.1149/1945-7111/adf09c

E. J. Butler et al., “Quantifying Electrolyte Motion in Cylindrical Li-Ion Cells using Rotational Inertia Measurements,” J. Electrochem. Soc., vol. 172, no. 6, p. 060526, June 2025, doi: 10.1149/1945-7111/ade010

S. Martin Maher et al., “Changes to the Electrolyte in NMC640/Graphite Li-Ion Pouch Cells Tested for One Year at 85 °C,” J. Electrochem. Soc., vol. 172, no. 5, p. 050521, May 2025, doi: 10.1149/1945-7111/add41a

M. Yue et al., “Comprehensive Study of the Degradation of LiFePO4 /Graphite Cells at Elevated Temperatures,” J. Electrochem. Soc., vol. 172, no. 5, p. 050502, May 2025, doi: 10.1149/1945-7111/adcfca

R. A. Dressler, H. Ingham, and J. R. Dahn, “Investigation of the Effect of Depth of Discharge/State of Charge Limitations, C-Rate, and Temperature on the Lifetime of Nmc/Silicon-Graphite Pouch Cells,” J. Electrochem. Soc., vol. 172, no. 5, p. 050517, May 2025, doi: 10.1149/1945-7111/add382

P. Bunyanidhi et al., “Different Impacts of Dissolved Transition Metals on the Graphite Anode in Lithium-Ion Batteries,” J. Electrochem. Soc., vol. 172, no. 4, p. 040506, Apr. 2025, doi: 10.1149/1945-7111/adc511

K. Leslie, J. J. Abraham, H. MacLennan, R. Fenner, J. R. Dahn, and M. Metzger, “Reducing the Rate of Mn Dissolution in LiMn0.8 Fe0.2 PO4 /Graphite Cells with Mixed Salt and Low Salt Molarity Electrolytes,” J. Electrochem. Soc., vol. 172, no. 4, p. 040515, Apr. 2025, doi: 10.1149/1945-7111/adc951

T. Bond, S. Gasilov, R. Dressler, R. Petibon, S. Hy, and J. R. Dahn, “Operando 3D Imaging of Electrolyte Motion in Cylindrical Li-Ion Cells,” J. Electrochem. Soc., vol. 172, no. 3, p. 030512, Mar. 2025, doi: 10.1149/1945-7111/adba8f

S. Azam, W. Black, H. MacLennan, A. Eldesoky, and J. R. Dahn, “Additive Screening of LFP/graphite Pouch Cells for High Temperature Cycling at 70 °C,” J. Electrochem. Soc., vol. 172, no. 2, p. 020536, Feb. 2025, doi: 10.1149/1945-7111/adb64d

K. Tuul et al., “Limitations of Li-Ion Pouch Cells for Accelerated Testing and Long-Lifetime Cells,” J. Electrochem. Soc., vol. 172, no. 2, p. 020519, Feb. 2025, doi: 10.1149/1945-7111/adb217

C. Floras, S. Martin Maher, K. Tuul, J. Harlow, M. Bauer, and J. R. Dahn, “Designing a Lithium-Ion Cell for Studies of a Single Degradation Mechanism Over a Wide Temperature Range,” J. Electrochem. Soc., vol. 172, no. 2, p. 020514, Feb. 2025, doi: 10.1149/1945-7111/adb184

T. Taskovic et al., “Dicarbonate Compounds as Electrolyte Solvents for Li-ion Cell Operation,” J. Electrochem. Soc., vol. 172, no. 2, p. 020535, Feb. 2025, doi: 10.1149/1945-7111/adb7c9

D. Rathore, R. A. Dressler, F. Vain, H. Tariq, M. Johnson, and J. R. Dahn, “Prelithiating Silicon-based Anodes using Lithium-excess Layered Positive Electrode Materials,” J. Electrochem. Soc., vol. 171, no. 12, p. 120503, Dec. 2024, doi: 10.1149/1945-7111/ad9993

S. Azam et al., “Impact of Electrolyte Additives on the Lifetime of High Voltage NMC Lithium-Ion Pouch Cells,” J. Electrochem. Soc., vol. 171, no. 11, p. 110510, Nov. 2024, doi: 10.1149/1945-7111/ad8d0c

Z. Ye et al., “Impact of Jellyroll Tapes on Performance of Layered Oxide/Hard Carbon Sodium-Ion Pouch Cells,” J. Electrochem. Soc., vol. 171, no. 11, p. 110503, Nov. 2024, doi: 10.1149/1945-7111/ad8d4f

T. Bond, R. Gauthier, G. King, R. Dressler, J. J. Abraham, and J. R. Dahn, “The Complex and Spatially Heterogeneous Nature of Degradation in Heavily Cycled Li-ion Cells,” J. Electrochem. Soc., vol. 171, no. 11, p. 110514, Nov. 2024, doi: 10.1149/1945-7111/ad88a8

K. Leslie, M. D. L. Garayt, E. J. Butler, M. Metzger, and J. R. Dahn, “Operando Stack Pressure Measurement of LFP/Graphite and LMFP/Graphite Cells to aid in State of Charge Prediction,” J. Electrochem. Soc., vol. 171, no. 10, p. 100516, Oct. 2024, doi: 10.1149/1945-7111/ad8144

D. Rathore et al., “Impact of Cobalt Addition on Single-Crystal Li1+x (Ni0.6 Mn0.4 )1−x O2 Cathode Material Performance,” J. Electrochem. Soc., vol. 171, no. 8, p. 080520, Aug. 2024, doi: 10.1149/1945-7111/ad6cfc

E. S. Zsoldos, D. T. Thompson, W. Black, S. M. Azam, and J. R. Dahn, “The Operation Window of Lithium Iron Phosphate/Graphite Cells Affects their Lifetime,” J. Electrochem. Soc., vol. 171, no. 8, p. 080527, Aug. 2024, doi: 10.1149/1945-7111/ad6cbd

D. Rathore et al., “Substituting Na for Excess Li in Li1+x (Ni0.6 Mn0.4 )1−x O2 Materials,” J. Electrochem. Soc., vol. 171, no. 8, p. 080503, Aug. 2024, doi: 10.1149/1945-7111/ad6937

E. S. Zsoldos, A. Eldesoky, E. Logan, and J. R. Dahn, “LiMn2 O4 /Graphite Cell Degradation Mechanisms Studying How Mn Deposition Accelerates Lithiated Graphite Reactivity with Electrolyte,” J. Electrochem. Soc., vol. 171, no. 7, p. 070504, July 2024, doi: 10.1149/1945-7111/ad5910

T. Taskovic et al., “An Investigation of Li-Ion Cell Degradation Caused by Simulated Autoclave Cycles,” J. Electrochem. Soc., vol. 171, no. 6, p. 060520, June 2024, doi: 10.1149/1945-7111/ad5625

I. Hamam, R. Omessi, M. Ball, and J. R. Dahn, “Is Aluminium Useful in NiMn Cathode Systems?: A Study of the Effectiveness of Al in Co-Free, Ni-Rich Positive Electrode Materials for Li-Ion Batteries,” J. Electrochem. Soc., vol. 171, no. 6, p. 060515, June 2024, doi: 10.1149/1945-7111/ad4e73

H. Hijazi et al., “Can Layered Oxide/Hard Carbon Sodium-Ion Pouch Cells with Simple Electrolyte Additives Achieve Better Cycle Life than LFP/Graphite Cells?,” J. Electrochem. Soc., vol. 171, no. 5, p. 050521, May 2024, doi: 10.1149/1945-7111/ad47da

M. Yue, S. Azam, N. Zhang, J. R. Dahn, and C. Yang, “Residual NMP and Its Impacts on Performance of Lithium-Ion Cells,” J. Electrochem. Soc., vol. 171, no. 5, p. 050515, May 2024, doi: 10.1149/1945-7111/ad4396

K. Tuul et al., “Exceptional Performance of Li-ion Battery Cells with Liquid Electrolyte at 100 °C,” J. Electrochem. Soc., vol. 171, no. 4, p. 040510, Apr. 2024, doi: 10.1149/1945-7111/ad36e7

Z. Ye, H. Hijazi, W. Black, S. Azam, J. R. Dahn, and M. Metzger, “Impact of Salts and Linear Carbonates on the Performance of Layered Oxide/Hard Carbon Sodium-Ion Pouch Cells with Alkyl Carbonate Electrolytes,” J. Electrochem. Soc., vol. 171, no. 4, p. 040522, Apr. 2024, doi: 10.1149/1945-7111/ad3b73

Research focus

A detailed 3D model visualization of an urban area with various layers indicating different aspects of the built environment. The image shows a software interface with main layers and services listed on the left side, including options for 'Built Environment', 'Transport', 'Energy', 'Waste' and 'Ecosystem'.

Sodium-ion advancements

This research on Sodium-ion batteries addresses supply constraints and cost factors, making battery energy storage more inclusive and accessible for everyone. Ultimately, when paired with low-cost solar energy, it will represent a techno economically viable pathway to creating decarbonized, resilient communities.

A detailed 3D model visualization of an urban area with various layers indicating different aspects of the built environment. It features a services menu with options such as 'Building Info', 'Energy Demand' and 'Network Solution'.

Industry collaboration

One of the main focuses of this project is bridging the gap between academia and industry. The project collaborates closely with the industry and will build on the existing partnership between Dalhousie and Tesla, where substantial work is already underway on Sodium-ion battery technology. Additionally, it aims to establish a new partnership between Dalhousie and Faradion, the leading company globally dedicated to Na-ion batteries.

Non-academic partners

Thank you to our non-academic partners for your support and trust.

Volt-Age is funded by a $123-million grant from the Canada First Research Excellence Fund.

Canada First Research Excellence Fund logo
Back to top

© Concordia University