Batteries sodium-ion pour systèmes de stockage d’énergie résidentiels
Aperçu du projet
Partout dans le monde, les batteries lithium-ion jouent un rôle crucial dans le stockage de l’énergie, des systèmes de services publics à grande échelle (p. ex. : Megapack de Tesla) aux solutions résidentielles (Powerwall de Tesla). Toutefois, comme il est prévu que l’électrification à l’échelle mondiale se poursuive au-delà de 2030, les inquiétudes concernant la disponibilité du lithium se font de plus en plus vives. Les chercheurs se tournent donc vers une autre solution viable, les batteries sodium-ion.
Ce projet étudie le potentiel des batteries sodium-ion pour le stockage d’énergie résidentiel. En collaboration avec Faradion, un partenaire industriel de premier plan, la recherche vise la mise au point de petites cellules poches et d’électrolytes répondant aux exigences particulières des systèmes sodium-ion.
Renseignements clés
| Chercheur principal | Jeff Dahn, professeur, physique et sciences de l’atmosphère, Université Dalhousie |
Cochercheur principal |
Lukas Swan, professeur, génie mécanique, Université Dalhousie |
Collaborateurs de recherche |
Karim Zaghib, professeur, Département de génie chimique et des matériaux, directeur général de Volt-Age, Université Concordia; Chongyin Yang, professeur adjoint et titulaire de la chaire Tesla Canada, Université Dalhousie; Michael Metzger, professeur adjoint, physique et sciences de l’atmosphère, Université Dalhousie; Ruth Sayers, directrice de la technologie, Faradion; Chris Wright, Faradion; Sunny Hy, Tesla |
| Partenaires non universitaires | Tesla, Faradion |
| Mots-clés de la recherche | Stockage d’énergie, énergie renouvelable, batterie sodium-ion, hors réseau, écrêtement des pointes, alimentation de secours, résilience électrique, stockage d’énergie communautaire |
| Budget | En espèces : 200 000 $ En nature : 190 000 $ |
Publications:
W. Black, S. Azam, H. MacLennan, M. Metzger, and J. R. Dahn, “Understanding Capacity Loss in LFP/Graphite Pouch Cells at High Temperatures through Modelling,” J. Electrochem. Soc., vol. 172, no. 9, p. 090503, Sept. 2025, doi: 10.1149/1945-7111/adf5ed.
A. Dutta, K. Homlamai, M. B. Johnson, M. Sawangphruk, and J. R. Dahn, “Designing Surface Coating Strategies with Tungsten on Single Crystal NMC Materials by XPS,” Advanced Energy Materials, vol. 15, no. 36, p. e03051, Sept. 2025, doi: 10.1002/aenm.202503051.
S. Azam et al., “Impact of Pyrocarbonate Additives and Salt Chemistries (LiFSI and LiPF6 ) on Gassing and Performance in Silicon-Containing Pouch Cells,” J. Electrochem. Soc., vol. 172, no. 9, p. 090529, Sept. 2025, doi: 10.1149/1945-7111/ae0527.
S. Yu et al., “Comparing Ni vs NiO as the Nickel Source in the All-Dry Laboratory and Industrial Scale Synthesis of LiNi0.925 Mn0.02 Co0.055 O2,” J. Electrochem. Soc., vol. 172, no. 9, p. 090538, Sept. 2025, doi: 10.1149/1945-7111/ae0885.
M. C. Obialor et al., “Impact of Oxide Growth on Lead Negative Electrodes for Sodium-Ion Batteries,” J. Electrochem. Soc., vol. 172, no. 8, p. 080534, Aug. 2025, doi: 10.1149/1945-7111/adfca3.
M. D. L. Garayt, I. L. Monchesky, M. C. Obialor, S. Yu, J. R. Dahn, and M. Metzger, “Differential Voltage Analysis of Lead-Containing Sodium-Ion Full Cells,” J. Electrochem. Soc., vol. 172, no. 8, p. 080513, July 2025, doi: 10.1149/1945-7111/adf5ec.
E. Oyekola, L. Swan, and J. R. Dahn, “Thermal modeling of a subterranean battery energy storage system for residential and commercial buildings,” Journal of Energy Storage, vol. 123, p. 116803, July 2025, doi: 10.1016/j.est.2025.116803.
B. Tang et al., “Dimethyl Sulfite as a Possible Alternative Electrolyte Solvent for Na-Ion Batteries,” J. Electrochem. Soc., vol. 172, no. 8, p. 080509, July 2025, doi: 10.1149/1945-7111/adf5e9.
S. Azam et al., “Improving and Understanding Lifetime of LFP/Graphite Pouch Cells with Higher Concentrations of Vinylene Carbonate in the Electrolyte,” J. Electrochem. Soc., vol. 172, no. 7, p. 070523, July 2025, doi: 10.1149/1945-7111/adf09c.
E. J. Butler et al., “Quantifying Electrolyte Motion in Cylindrical Li-Ion Cells using Rotational Inertia Measurements,” J. Electrochem. Soc., vol. 172, no. 6, p. 060526, June 2025, doi: 10.1149/1945-7111/ade010.
S. Martin Maher et al., “Changes to the Electrolyte in NMC640/Graphite Li-Ion Pouch Cells Tested for One Year at 85 °C,” J. Electrochem. Soc., vol. 172, no. 5, p. 050521, May 2025, doi: 10.1149/1945-7111/add41a.
M. Yue et al., “Comprehensive Study of the Degradation of LiFePO4 /Graphite Cells at Elevated Temperatures,” J. Electrochem. Soc., vol. 172, no. 5, p. 050502, May 2025, doi: 10.1149/1945-7111/adcfca.
R. A. Dressler, H. Ingham, and J. R. Dahn, “Investigation of the Effect of Depth of Discharge/State of Charge Limitations, C-Rate, and Temperature on the Lifetime of Nmc/Silicon-Graphite Pouch Cells,” J. Electrochem. Soc., vol. 172, no. 5, p. 050517, May 2025, doi: 10.1149/1945-7111/add382.
P. Bunyanidhi et al., “Different Impacts of Dissolved Transition Metals on the Graphite Anode in Lithium-Ion Batteries,” J. Electrochem. Soc., vol. 172, no. 4, p. 040506, Apr. 2025, doi: 10.1149/1945-7111/adc511.
K. Leslie, J. J. Abraham, H. MacLennan, R. Fenner, J. R. Dahn, and M. Metzger, “Reducing the Rate of Mn Dissolution in LiMn0.8 Fe0.2 PO4 /Graphite Cells with Mixed Salt and Low Salt Molarity Electrolytes,” J. Electrochem. Soc., vol. 172, no. 4, p. 040515, Apr. 2025, doi: 10.1149/1945-7111/adc951.
T. Bond, S. Gasilov, R. Dressler, R. Petibon, S. Hy, and J. R. Dahn, “Operando 3D Imaging of Electrolyte Motion in Cylindrical Li-Ion Cells,” J. Electrochem. Soc., vol. 172, no. 3, p. 030512, Mar. 2025, doi: 10.1149/1945-7111/adba8f.
S. Azam, W. Black, H. MacLennan, A. Eldesoky, and J. R. Dahn, “Additive Screening of LFP/graphite Pouch Cells for High Temperature Cycling at 70 °C,” J. Electrochem. Soc., vol. 172, no. 2, p. 020536, Feb. 2025, doi: 10.1149/1945-7111/adb64d.
K. Tuul et al., “Limitations of Li-Ion Pouch Cells for Accelerated Testing and Long-Lifetime Cells,” J. Electrochem. Soc., vol. 172, no. 2, p. 020519, Feb. 2025, doi: 10.1149/1945-7111/adb217.
C. Floras, S. Martin Maher, K. Tuul, J. Harlow, M. Bauer, and J. R. Dahn, “Designing a Lithium-Ion Cell for Studies of a Single Degradation Mechanism Over a Wide Temperature Range,” J. Electrochem. Soc., vol. 172, no. 2, p. 020514, Feb. 2025, doi: 10.1149/1945-7111/adb184.
T. Taskovic et al., “Dicarbonate Compounds as Electrolyte Solvents for Li-ion Cell Operation,” J. Electrochem. Soc., vol. 172, no. 2, p. 020535, Feb. 2025, doi: 10.1149/1945-7111/adb7c9.
D. Rathore, R. A. Dressler, F. Vain, H. Tariq, M. Johnson, and J. R. Dahn, “Prelithiating Silicon-based Anodes using Lithium-excess Layered Positive Electrode Materials,” J. Electrochem. Soc., vol. 171, no. 12, p. 120503, Dec. 2024, doi: 10.1149/1945-7111/ad9993.
S. Azam et al., “Impact of Electrolyte Additives on the Lifetime of High Voltage NMC Lithium-Ion Pouch Cells,” J. Electrochem. Soc., vol. 171, no. 11, p. 110510, Nov. 2024, doi: 10.1149/1945-7111/ad8d0c.
Z. Ye et al., “Impact of Jellyroll Tapes on Performance of Layered Oxide/Hard Carbon Sodium-Ion Pouch Cells,” J. Electrochem. Soc., vol. 171, no. 11, p. 110503, Nov. 2024, doi: 10.1149/1945-7111/ad8d4f.
T. Bond, R. Gauthier, G. King, R. Dressler, J. J. Abraham, and J. R. Dahn, “The Complex and Spatially Heterogeneous Nature of Degradation in Heavily Cycled Li-ion Cells,” J. Electrochem. Soc., vol. 171, no. 11, p. 110514, Nov. 2024, doi: 10.1149/1945-7111/ad88a8.
K. Leslie, M. D. L. Garayt, E. J. Butler, M. Metzger, and J. R. Dahn, “Operando Stack Pressure Measurement of LFP/Graphite and LMFP/Graphite Cells to aid in State of Charge Prediction,” J. Electrochem. Soc., vol. 171, no. 10, p. 100516, Oct. 2024, doi: 10.1149/1945-7111/ad8144.
D. Rathore et al., “Impact of Cobalt Addition on Single-Crystal Li1+x (Ni0.6 Mn0.4 )1−x O2 Cathode Material Performance,” J. Electrochem. Soc., vol. 171, no. 8, p. 080520, Aug. 2024, doi: 10.1149/1945-7111/ad6cfc.
E. S. Zsoldos, D. T. Thompson, W. Black, S. M. Azam, and J. R. Dahn, “The Operation Window of Lithium Iron Phosphate/Graphite Cells Affects their Lifetime,” J. Electrochem. Soc., vol. 171, no. 8, p. 080527, Aug. 2024, doi: 10.1149/1945-7111/ad6cbd.
D. Rathore et al., “Substituting Na for Excess Li in Li1+x (Ni0.6 Mn0.4 )1−x O2 Materials,” J. Electrochem. Soc., vol. 171, no. 8, p. 080503, Aug. 2024, doi: 10.1149/1945-7111/ad6937.
E. S. Zsoldos, A. Eldesoky, E. Logan, and J. R. Dahn, “LiMn2 O4 /Graphite Cell Degradation Mechanisms Studying How Mn Deposition Accelerates Lithiated Graphite Reactivity with Electrolyte,” J. Electrochem. Soc., vol. 171, no. 7, p. 070504, July 2024, doi: 10.1149/1945-7111/ad5910.
T. Taskovic et al., “An Investigation of Li-Ion Cell Degradation Caused by Simulated Autoclave Cycles,” J. Electrochem. Soc., vol. 171, no. 6, p. 060520, June 2024, doi: 10.1149/1945-7111/ad5625.
I. Hamam, R. Omessi, M. Ball, and J. R. Dahn, “Is Aluminium Useful in NiMn Cathode Systems?: A Study of the Effectiveness of Al in Co-Free, Ni-Rich Positive Electrode Materials for Li-Ion Batteries,” J. Electrochem. Soc., vol. 171, no. 6, p. 060515, June 2024, doi: 10.1149/1945-7111/ad4e73.
H. Hijazi et al., “Can Layered Oxide/Hard Carbon Sodium-Ion Pouch Cells with Simple Electrolyte Additives Achieve Better Cycle Life than LFP/Graphite Cells?,” J. Electrochem. Soc., vol. 171, no. 5, p. 050521, May 2024, doi: 10.1149/1945-7111/ad47da.
M. Yue, S. Azam, N. Zhang, J. R. Dahn, and C. Yang, “Residual NMP and Its Impacts on Performance of Lithium-Ion Cells,” J. Electrochem. Soc., vol. 171, no. 5, p. 050515, May 2024, doi: 10.1149/1945-7111/ad4396.
K. Tuul et al., “Exceptional Performance of Li-ion Battery Cells with Liquid Electrolyte at 100 °C,” J. Electrochem. Soc., vol. 171, no. 4, p. 040510, Apr. 2024, doi: 10.1149/1945-7111/ad36e7.
Z. Ye, H. Hijazi, W. Black, S. Azam, J. R. Dahn, and M. Metzger, “Impact of Salts and Linear Carbonates on the Performance of Layered Oxide/Hard Carbon Sodium-Ion Pouch Cells with Alkyl Carbonate Electrolytes,” J. Electrochem. Soc., vol. 171, no. 4, p. 040522, Apr. 2024, doi: 10.1149/1945-7111/ad3b73.
But de la recherche

Amélioration de la technologie sodium-ion
Ce projet s’attaque aux principaux défis liés au stockage d’énergie par batteries, notamment la rareté des ressources et les coûts élevés. Les batteries sodium-ion sont plus durables et accessibles que les batteries lithium-ion. Associées à l’énergie solaire à faible coût, elles constituent une solution prometteuse et rentable pour des collectivités résilientes et décarbonées.

Collaboration avec l’industrie
Le renforcement de la collaboration entre la communauté universitaire et l’industrie est un élément central de cette recherche. Le projet s’appuie sur le partenariat de longue date de l’Université Dalhousie avec Tesla et lance une nouvelle collaboration avec Faradion, chef de file mondial des batteries sodium-ion. Ensemble, ces partenariats visent à accélérer l’innovation et la viabilité commerciale.
Partenaires non universitaires
Merci à nos partenaires non universitaires pour leur soutien et leur confiance.