On this page
Research areas: Synthetic biology, chemical biology, enzyme engineering, directed evolution, antimicrobial drug screening
B.Sc. (University of British Columbia) Ph.D. (University of Cambridge)
Enzymes are extraordinary biocatalysts –they are the machinery within cell factories crafted by Nature over aeons of evolution. The aims of my research are focused upon using techniques in synthetic biology as a means of exploiting enzymes, developing them as tools in industrial biocatalysis, as well as targeting them within pathogenic microbes to disable them with specific inhibitor drugs as therapeutics to treat infectious diseases.
Using techniques like directed evolution, we can engineer enzymes to optimize them towards our desired activities by mimicking the natural selection process in the laboratory. To this end we are pursuing research towards discovering and engineering enzyme biocatalysts for the production of anticancer anthracycline glycoside drugs and other therapeutic drugs from the same class of natural products for use in a wide range of health applications. We also aim to establish, using synthetic biology, new methods for producing biorenewable hydrocarbons as alternatives to petroleum products and to engineer, through directed evolution, efficient enzyme biocatalysts for doing so.
We aim to develop and apply high-throughput enzyme activity-based methods for discovering drugs against Mycobacteria tuberculosis using an in vitro reconstituted biosynthetic pathway of mycobacterial cell wall components by which to assay enzyme inhibitors.
Students interested in research positions in our lab, please email a C.V. and provide the names and contact information of references
See Google Scholar Profile
© Concordia University