Research Chairs
Gina Cody Research Chairs
NSERC Chair in Aersopace Design Engineering
The NSERC Chair in Aerospace Design Engineering is a 5-year program that designs and coordinates training to meet the growing demand of Montreal’s aerospace industry. Our approach to engineering education is rooted in continuous and progressive training that unites academic and industry partners to create holistic, hands-on experiential learning.
Industrial Research Chairs
The NSERC Industrial Research Chair in Automated Composites Manufacturing has for its objectives the development of composites made using automated fibre placement (AFP) process. The supporting companies include Bombardier Aerospace, Bell Helicopter Textron Canada Ltd., Composites Atlantic Limited, Delastek Ltd., and Emergia Aerospace. Other collaborators include the National Research Council Canada, Automated Dynamics, and CYTEC Engineered Materials. The Chair program will cover three types of activities. The first type of activity will focus on the manufacturing and characterization of composite laminates geared toward the aerospace industry. Effects of different parameters—such as the speed of manufacturing, the temperature and pressure on the quality of the laminates—will be studied. The second type of activity will be on the development of composite structural components that have been made using other manufacturing techniques—such as hand lay-up/autoclave and liquid composite moulding. Comparison will be made on the performance of composite components made using the different techniques. The third type of activity will be on the development of new and novel composite structural components that can only be made using AFP. The performance of these composite structural components will be evaluated.The Chair results will have a strong impact on the technological advance for the industrial partners, to a leading position of Canadian technology, and will contribute to the improvement of socio-economic conditions in Canada. Over the past few years, composites have been used extensively for the manufacturing of lightweight structures—such as aircrafts, automobiles, wind turbines, and sports equipment. The use of automation will enhance the speed of production, improve the quality of parts, enhance the performance, and reduce waste; thus helping to improve the environment. Automated composites manufacturing will also provide a more level playing field for manufacturing of composites from low labour-cost countries and high labour-cost countries, thus helping to keep manufacturing jobs in Canada. Lighter aircrafts would also reduce fuel consumption, thus helping to protect the environment. Faster production would reduce manufacturing costs and produce more competitiveness for the companies.
Uninterrupted service, even in the most complex software and computing systems, has become fundamental in user expectations. Consider, for instance, the Internet and its related servers—such as Google. End-users require such systems to work correctly, efficiently and without any service interruption. The NSERC/Ericsson Industrial Research Chair on Model-Based Software Management provides strategic intelligence to the Canadian computing and telecommunications industries. The Chair's goal is to investigate modelling languages for platforms, requirements, software and system characteristics. It aims to devise novel techniques for requirement decomposition and COTS components selection/configuration, thereby considerably improving the quality and functionality of component-based systems.The Chair will explore new methods to validate, deploy, monitor, reconfigure and upgrade systems while maintaining critical characteristics—such as high availability. The Chair collaborates closely with Ericsson—a major player in research and development in Canada. This university-industry partnership provides students with tangible experience at both Concordia University and Ericsson, which which gives the students a competitive edge as they enter the workforce and equips them with skills to strengthen Canada's leadership in the management of software systems.
Buildings consume over half of Canada's electricity production, making the optimized operation and improvement of energy efficiency in buildings an important step towards reducing our use of carbon-based energy sources. Hydro-Québec and Concordia University have joined forces to establish a comprehensive research program in Optimized Building Operation and Energy Efficiency. With two additional key partners – Régulvar in integration of automation systems and CanmetENERGY in energy efficiency – the program is expected to result in significant benefits to Canada. Building on the Chairholder's recent efforts in the fields of energy efficiency, smart building operating strategies and solar buildings, new knowledge and innovative solutions will be developed to substantially enhance building performance.
Buildings consume over half of Canada's electricity production, making the optimized operation and improvement of energy efficiency in buildings an important step towards reducing our use of carbon-based energy sources. Hydro-Québec and Concordia University have joined forces to establish a comprehensive research program in Optimized Building Operation and Energy Efficiency. With two additional key partners – Régulvar in integration of automation systems and CanmetENERGY in energy efficiency – the program is expected to result in significant benefits to Canada. Building on the Chairholder's recent efforts in the fields of energy efficiency, smart building operating strategies and solar buildings, new knowledge and innovative solutions will be developed to substantially enhance building performance.
Mourad Debbabi: NSERC/Hydro-Québec/Thales Industrial Research Chair in Enhancing Smart Grid Security
Research summary forthcoming.
Canada Research Chairs
Dr. Kishk's goal is to develop miniaturized antennas for smart phones that cover multiple frequency bands and can harvest solar energy to recharge batteries. He is also investigating how to produce affordable, anti-collision radars for vehicles and microwave sensors for biomedical applications in cancer detection.
End-user services (e.g. Multimedia and multiparty games, distance learning, video on demand) are the raison d’être of communications networks. The specification and validation of architectures for end-user services in communication networks is a major engineering challenge. The widest possible range of services needs to be engineered; all the phases of the life cycle (e.g. development, deployment, execution, usage and withdrawal) need to be addressed; and the specifics of the communications networks need to be taken into account. This research program focus on specification and validation of comprehensive architectures (e.g. concepts, principles, rules) for engineering end-user services in communications networks. The program draws on several disciplines (e.g. distributed systems, software engineering, networking) and deals with both conventional networks (e.g. 3G) and challenged networks (e.g. mobile ad hoc networks, wireless sensors and actuators networks).
In aircraft jet engines, the flow of hot combustion gases can damage internal components if their surfaces are not properly protected with a temperature-resistant coating. Moreau’s team develops diagnostics and modeling tools to improve coating materials and to tailor them for optimum performance in industrial applications. His work will improve energy efficiency and can boost economic growth in the aerospace sector.
Concordia University Research Chairs
Research summary forthcoming
Research summary forthcoming
Research summary forthcoming
Research summary forthcoming
The phenomenon of wing rock or limit-cycle oscillation that normally occurs in aircraft is mainly due to mechanical backlash, dead zone and hysteresis. This phenomenon is of great concern in the aerospace industry. Extensive research has been carried out to find means of controlling this unwanted oscillation. Mechanical backlash, dead-zone and hysteresis that generate such oscillations fall into the general category of non-smooth nonlinearities. They are common in the industrial controls systems, ranging from high-technology applications (micromanipulation in fabrication of semiconductors, ultra-precision turning of turbine shafts, micro-stabbers and micropipettes in cellular biology) to traditional applications (robot manipulators, and drive systems of large vehicles). Dr. Su’s plans are to develop control theories, engineering design methods and technology for non-smoooth dynamic systems, arising from parameter variations or from neglected dynamics.
The development of control methods have a direct impact on the products being produced, and are suitable for any motion systems with mechanical connections, hydraulic servo-valves, piezoelectric actuators, electric servomotors, and biomedical actuator systems that require fast and precision control.
Research summary forthcoming
The revolution of information technology and electronics in general, is driven by the extraordinary advances in semiconductor technology. Today’s microelectronics systems are complex designs with literally tens of millions of transistors on a single chip, often combining microcontroller and DSP processor cores, memory blocks, application specific logic and mixed-signal functions. Complexity, time-to-market pressure and evolving requirements pose new challenges in the design and verification process. Traditional testing such as simulation methods, can no longer give reasonable assurance for the quality of a product. Dr. Tahar’s research aims to develop techniques and tools enabling the verification of real-size microelectronics designs through alternative means, called formal methods, involving all possible scenarios of input and state combinations, giving very strong results about the correctness of designs. The proposed techniques will be validated using real designs, which are industrial benchmarks. This approach will advance the systems specification and verification process, thus shortening the design cycle of microelectronics products.
Research summary forthcoming
Minimization and avoidance of pollutant releases and understanding the movement and transformation of contaminants once they reach the environment, are required to avoid the degradation of the environment and hence the ecosystem. The increasing population is leading to fewer waste management options, environmental destruction, and increased disasters due to global warming. Environmental management and technological development will ultimately enhance the quality of life of the public and the quality of the environment for the entire ecosystem. Through this research program, Dr. Mulligan looks to develop technologies for the treatment of air, water, waste and soil contaminants, as well as investigate the processes for the transport and degradation of chemicals in the complete environment across all media.
With the striking expansion of information technology, security is emerging as the most important challenge facing computer science and engineering. Individuals, corporations and organizations are relying more and more on information systems that are connected to public networks, to transmit confidential and security-critical data. This trend has increased the risks of interception, malicious instrumentation and misuse of sensitive electronic information. Accordingly, information systems must be protected against any malicious attempt that may affect secrecy (by leaking sensitive information), integrity (by corrupting information), authentication (by impersonating authorized principals), availability (by denying service to legal users), etc. The negative impacts of this situation include: loss or endangerment of human life, financial loss, unauthorized use or misuse of information, denial of services, alteration and/or compromise of data or software. Our research aims at creating dedicated processes, methodologies, techniques and tools to prevent attacks, reduce vulnerabilities, and mitigate the underlying risks and forensically investigate cyber incidents.
Research summary forthcoming
Research summary forthcoming
Research summary forthcoming
Research summary forthcoming
Research summary forthcoming
Research summary forthcoming
Research summary forthcoming
Research summary forthcoming
The objectives of the proposed research are to provide enhanced capabilities to the command and control operators, and ultimately for fully autonomous on-board systems in determining the most efficient allocation, configuration, strategies, and architectures for cooperative fault diagnosis and control of a network of unmanned vehicles (UVs). The fundamental challenges and issues envisaged are development of novel, formal, and rigorous distributed and semi-decentralized methodologies for management and determination of exchange of data, knowledge, and actions among the team of cooperating UVs. These goals are to be accomplished by utilizing control theories that are constrained by the communication network and computational resources for cooperative fault diagnosis and cooperative recovery and reconfiguration control objectives that are subject to real-time constraints for guaranteeing and maintaining the mission requirements. The expected outcomes of this project will provide rigorous solutions to practical problems of paramount importance that is of significant interest to the space, robotics, marine, and aerospace industries and will accumulate human capital and develop sustainable research capabilities.
Research summary forthcoming