Thesis defences

PhD Oral Exam - Hala Youssef, Chemistry

Interfacial behaviour of β-sheet forming antimicrobial peptide GL13K

Wednesday, June 19, 2019
2 p.m. – 5 p.m.

This event is free


School of Graduate Studies


Mary Appezzato


Richard J. Renaud Science Complex
7141 Sherbrooke W.
Room SP 265.29



When studying for a doctoral degree (PhD), candidates submit a thesis that provides a critical review of the current state of knowledge of the thesis subject as well as the student’s own contributions to the subject. The distinguishing criterion of doctoral graduate research is a significant and original contribution to knowledge.

Once accepted, the candidate presents the thesis orally. This oral exam is open to the public.


Antimicrobial peptides (AMPs) have been proposed as promising alternatives to conventional antibiotics. They are highly selective and efficient bactericidal agents that are already present as elements of innate immunity. GL13K is a synthetic peptide, derived from residues 141-153 of the human parotid secretory protein, and it is an AMP that is bactericidal against Gram-positive and Gram-negative bacteria. Previous biophysical studies with this peptide showed that it selectively folds into b-sheets in the presence of anionic membranes and targets membranes via the carpet method.

In this thesis, initial studies focused on the surface behaviour of GL13K to determine whether it has the propensity to form amyloidic structures. Once it was established that GL13K does not aggregate into amyloidic fibrils at the air/water interface or when transferred to solid support, studies with anionic monolayers of various rigidity and packing properties were conducted using dioleoylphosphatidylglycerol (DOPG) and mixed DOPG:cholesterol and DOPG:diphytanoylphosphatidylglycerol (DPhPG) films. DPhPG is a branched, anionic lipid that only modulates membrane packing while cholesterol modulates both packing and rigidity. These studies showed that while membrane packing does contribute to the modulation of peptide insertion, membrane rigidity plays a far greater role. This suggests that cholesterol may contribute to the protection of eukayotic cells from AMPs by attenuating peptide insertion.

Some bacteria have developed resistance to AMPs by upregulating the production of lysyl-phosphatidylglycerol (LPG) to mask the negative charge on their membranes. Model membranes consisting of dipalmitoylphosphatidylglycerol (DPPG) and mixtures of DPPG and DP3AdLPG, a stable analogue of LPG, were used to determine how this lysylation alters GL13K behaviour at the air/water interface. The functionalization of the headgroup attenuates the formation of crystalline b-sheets by disrupting the hydrogen bonding network. Peptide crystallinity appears to increase when the peptide is bound to the headgroup region which could either attenuate activity or alter the mechanism of activity.  This highlights the need for further research in this area to determine if a direct relationship between peptide crystallinity and function exists.

Back to top

© Concordia University