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Global Warming

s Lifestyle and behavior

g? Dietary change (low-carbon diet)

ﬁ Low-carbon energy (solar, wind, etc.)
5/ Carbon dioxide removal

52 Smart grid and load management

'a-"
| i
et _’l Industrial Plant
Power Plant
Sol O \ /
P;::r / w Cities and Offices

N

Smart
/ .
Powzingfam —i\L‘\ — Gr ld \L Smart Houses
= / —
Poh:vt:zcrlj’al:mr l Q Electric Vehicle

https://www.smart-energy.com/

gConcordia




Load Forecasting

120

What is Load Forecasting?
Electricity consumption
Historical Data
Electrical instruments

Human Behavior

ORIV

Other sciences
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Types of Load Forecasting
Very Short-Term

Short-Term

TERM
Medium-Term e
Long-Term
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Factor Affecting Short-Term

t% Economy
. Weather
g Humidity

%1 Holidays and weekends




Factor Affecting Medium and Long Term

Q Description of appliances

CJ8 Technology changes

@ Population

& Economic factors

'ﬁ] Age of equipment
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Time Series

Time Series data depend on the time. During time, they have different
behavior.

3 Specific attributes:
1. Trend: There is an increase or decrease during the whole time.

2. Seasonality: Many of time dependent data in a certain time have a
seasonal algorithm.

3. Noise (residuals): By subtracting both trend and seasonality from
original data, residuals (Noise) will remain.
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Time Series
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Time Series

Stationary data: a stationary time series does not have pattern to predict
the future by looking to it. Moving Average is almost constant.

Non-stationary

Moving Average: The average of specific time like every 10 minutes or
one hour.

2 Different tests:
- Dickey Fuller Test (P-Value)
- Rolling Test (Plotting)
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Data Sets

Malaysian Dataset = 17518 recorded sample.

[s]
40000 - ©
o]
=]
37500 1
=]
@ 8
= 35000 o — -
= - R
c
=
"5‘_ 32500 A
E
=1
W
=
30000 4
&
=
o
S
27500 4
25000 1 J — =]
o o
]
o o °
22500 1 8 o
Satulrda}r Sun:l:lay Mor:day '[Jeslday H'.Edmlesday Thurls:lay Fricllay
Days

13

load consumption
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Data Sets

German Dataset 2 2186 recorded sample.

Germany electric consumption
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o Statistical Models

e ARIMA
e ETS

mm Regression based Models

o Linear Regression
e SVR

mmm Deep Learning Models

e Fully Connected
o LSTM
e CNN

Machine
Learning
Techniques
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ARIMA

ARIMA stands for Autoregressive(AR) Integrated (1) Moving Average (MA).
ARIMA (p, d, q) / SARIMA (p, d, q)(P, D, Q,[m])
p: Lag order

d: Degree of differencing
g: Order of Moving Average

AR * Vi = Pot+ B1Yi-1+B2Yi—2 + .t [pYi—pt U

- Xt = 0p+ 0161 +02€6 5+ .+ O €+ €
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ARIMA

Malaysian: SARIMA (1,0,1)(2,0,0,[24.

ACF plot
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), German: SARIMA (5,1,0)(5,0,5,[7])

PACF plot
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ETS

Based on previous observations.

An alternative for ARIMA.

Feyp = aAg+(1-a) Fy

O< a <l
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Linear Regression

Simple Linear Regression : y/= ,50+ ,B]X] T U

where Y is dependent variable, B, interceptor, B, is the slope, X is the independent variable and
K, is residual of the model.

If there were more independent variables, we would have multiple linear regression (MLR).

To work with this model, best number for coefficients should be found. In order to achieve that
Least-squared error is used:

LSE =3 (¥~ X)2

Where X is predicted value, Y is actual value and i is indicator of i-th variable.

Q/”Concordia
19




Linear Regression

ACF plot

Using ACF plot.
Lags as independent variables. |

Selecting threshold.

80 80 100
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SVR

yi:WXi+b

Solution: min % | |w] | 2

Constraints:y; -wXj-b<e

wXi+b-y;<e
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Deep Learning

Fully Connected Neural Networks:

Input layer, hidden layer, outputlayer.

The complexity depends on number of hidden layer.
=W+,

h,=1f(a) -Relu, Softmax, Sigmoid

Find the Weights with back-paropagation

L=1/NX (y-p(@))*

Input Layer

Hidden Layer

Y

Output Layer

CConcordia




23

Deep Learning

Fully Connected Neural Networks:

RelU:

ReLU stands for Rectified Linear Unit and it works like linear function with a difference which is
output for negative inputs is zero. The mathematical formula is given as :

F(x)=max (0, X)
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Deep Learning model

Dense Dense Dense Dro Dense
» » » Prhey] »
27 18 18 out(0.2) 1

Overfitting: The model is extremely trained.

Working based on ACF plot ( Same as regression-based models).

Activation: RelLU




25

Deep Learning

CNN:

Convolutional Neural Networks
Based on Convolution opt.

Usable in 1-D, 2-D, 3-D

Common in NLP, image processing
Load forecasting and etc.

Feature extraction.

3d input

STRIDE

POOLING OPERATION
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Deep Learning

LSTM:

Long Short-Term Memories
Based on Control theory.
Including 3 different gates.

Looking back to previous data.

Useful to find the dependency.

EEEEEEEE
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Proposed model
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Evaluation

RMSE : is the standard deviation of the residuals (prediction errors)

A

RMSEJZR: i)

=1

MAPE: is the mean or average of the absolute percentage errors of forecasts

5 JAEL 100

N

MAPE =

R-Squared: is a statistical measure that represents the proportion of the variance for a
dependent variable that's explained by an independent variable or variables in a regression
model.

SSRES _ | > (i — 9:)°

R?=1— —
SStor > (v — )2
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Results of Malaysian data

| Modes | RMSE__ | MAPE | Rsquaredscore | Runtime(s)

ARIMA
ETS
Linear regression
SVR
DNN
Vanilla LSTM
CNN-LSTM

Proposed model

0.102
0.36
0.092
0.272
0.128
0.097
0.053
0.031

3.56
8.81
2.33
7.63
3.62
3.11
2.43
2.08

94.19%
90.06%
95.50%
90.40%
95.38%
96.63%
97.49%
98.23%

451.12
380.35
12.41
10.23
199.12
902.56
487.33
92.47
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Results of German data

ARIMA 0.201

ETS 0.316
Linear regression 0.214
SVR 0.247

DNN 0.25
Vanilla LSTM 0.197
CNN-LSTM 0.207
Proposed model 0.061

18.4
33.63
19.12
22.41
26.47
13.20
15.02

5.12

80.04%
70.1%
79.86%
74.39%
73.47%
83.17%
79.75%
91.18%

179.89
167.03
4.32
3.11
199.12
431.11
180.22
65.34
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Validation of the proposed model
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Validation

The proposed model

1) Different Time

horizons

2) Single

building data

3) Exogenous

variable
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1) Different Time Horizons

Malaysian data. RMSE:

Vanilla LSTM 0.097 0.121 0.189 0.197
CNN-LSTM 0.053 0.069 0.0782 0.082
Proposed model 0.033 0.0379 0.0401 0.0575

R-Squared score:

Vanilla LSTM 96.63% 95.21% 92.65% 92.03%
CNN-LSTM 97.49% 96.62% 94.31% 92.88%
Proposed model 98.14% 97.55% 96.64% 94.16%
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1) Different Time Horizons

German data. RMSE:

Vanilla LSTM 0.207 0.215 0.231 0.312
CNN-LSTM 0.197 0.201 0.209 0.279
Proposed model 0.0063 0.0752 0.0761 0.117

R-Squared score:

Vanilla LSTM 79.75% 78.88% 78.02% 74.14%
CNN-LSTM 83.17% 80.87% 79.65% 76.88%
Proposed model 91.31% 89.53% 89.18% 82.49%
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2) Single Building data

One-year hourly electricity and weather data—> Single building—=> Grenoble

1a

v

B

Load data (MW)

201 7 -0 Tem—

Z016-11

e @Concordia

2016-01

37



38

ingle Building data
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Results

Training the model with 9 month and test on 3 month.

Next hour prediction.

Jan-Sept 0.0585 83.3%
Apr-Dec 0.0509 86.39%
Average 0.0547 84.84%

Q/\”Concordia
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Scaled load
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3) Exogenous variable

Weather data. Modification in the architecture.
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3) Exogenous variable

Malaysian data: Correlation=0.56.

1 Hour 0.0289 99.15% 210.62
24 Hours 0.0302 98.2% 383.9
48 Hours 0.0385 97.26% 795.26

10 Days 0.492 96.05% 2821.08

French data: correlation=-0.08

____Tme | RWSE___| _ RsSquared | Runtime(s) _

Jan-Sept 0.0579 83.44% 260.18
Apr-Dec 0.0501 86.62% 165.73
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Conclusion

B Even though regression-based models perform well, they are not trustful enough.
Parallel CNN-LSTM models provide better performance than consecutive models.
@ Deep Learning models are powerful models which can be used for STLF and LTLF.
|ﬁ Weather can improve the accuracy of the models, but it leads to higher runtime.

The effect of weather data on results depend on the correlation value.

Q/”Concordia
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Carrying out Long-
term load
forecasting using

more variables. F ut ure WO rk

Modifications and
Oa improvements of
the models.

(L

Real-time
]}g[ forecasting (loT).
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