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What is happening Energy-wise?
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Urban Energy System Modeling (UESM)

= Strateqic Energy Planning
» Greenhouse Gas Emission reduction
= Sustainable Design

Single Building Energy Modeling

District Scale Energy Modeling

City Scale Energy Modeling




Urban Energy System Modeling (UESM)

UFrameworks for energy modeling, planning and policy making

=Different applications/ focus (Demand, Supply, Waste,...)

»\/arious Capabilities (Scale, Temporal Resolution, Technology,...)

=Different approaches (Benchmarking, Optimization, Simulation, ...)

AURORAxmp
EnergyPLAN
ETM
HEAT+
INSEL
OpenDSS
PyPSA
SimStadt
SynCity
Urbs
CityInSight
CYME
PRIMES

EnergyPlus
elransport
HOMER
INVERT/EE-Lab
MESSAGE
MODEST
NEMS
PLEXOS
RETScreen
STAR
TRACE
SAM
SWITCH

STREAM
TRNSYS
COMPOSE
EMCAS
E-OPT
City Energy Analyst
GEMIS
IKARUS
LEAP
Network Planner
SIMPOW
UMl

Names of commonly used UESMs
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Literature review - UESM
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Author Overview Focus/ Finding/ Suggestion
Cor;rg)(zlcl)y[g’g 3l Explored 37 UESMs Proposing best UESMS fit for every application
Sinha et al. 19 UESMs discussed in  Highlighted capabilities, limitations and future research
2014 [10] detail areas of different UESMs
Ringkjeb et al. Detailed review of 75 Categorized UESMs by general logic, spatiotemporal
2018 [11] UESMs resolution and techno-economic parameters

Explored 30 review
studies including 61
UESMs
Hall et al. 2016 Review of 22 model purpose and structure, technological detail and

[12] implemented UESMs mathematical approach

Yazdanie et al.
2021 [8]

Fundamental review of gaps and improvement point in
current tools




Literature review - Gaps

lIssues to be addressed in UESMs:

» | ack of adjustable temporal resolution regarding the problem and available data
= Lack of transparency and flexibility

= Not modeling demand (demand is an input)

* |nability to practice demand-side management strategies

= Enerqgy system sizing is not automatized / Input by the user

= Not capturing Energy System Performance fluctuations in high temporal resolution



Research Focus- Objectives 7

Proposing an automated, flexible and transparent workflow Capable of:
» Adjusting temporal resolution
" Integrating demand and supply side

» Selecting and sizing detailed energy system model components to supply heating,

cooling and domestic hot water
» Practicing demand-side management strateqgies

» Performing Optimization and sensitivity analysis




Proposed Workflow

Urban Building Energy Modeling
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Spatial Analysis |
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Envelope Analysis |
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. [Building 3D Desiga |

Geometry & Attributes
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National Codes
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for Construction

| Usage Schedules }
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python

Parsing GML File
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I Considering Weather Data
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Urban Building Energy
Simulation

Y

Heating & Cooling Loads

Urban Energy System Modeling
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( PV System Inputs W |
j sk [ PVModel |
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- : I ‘
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Case study 1- Dominion Bridge 15t Objective "

dDominion Bridge district, Lachine, Montreal

* 6 mixed-use buildings, 277,000 sgm, 90% residential, 10% office
JEnergy system design parameters
= Low-temp heating / High-temp cooling
= PV covers 65% roof area, Slope 31 degree

L Objectives
* Energy positivity potential
= Air Source & Ground Source HP sl el .
-5 -30
-4.2 -25
=3.9 -15
- -10
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1m
. -1.1 0
\ 1.7 5
1.6m| 4.4 10
31 \\\ 31 7.2 20
-t == —== -t 10 30

85 cm 85 cm Air Source vs. Ground Source Heat Pump‘




Case study 1-Results & findings 5

dSizeable floor area vs. limited PV space 4000

3784

3452

3500 B HP Electricity Demand (MWh/yr)
u Foreseeable OUtCOfT]e: 'E'H'e{‘g'y—P'e'S'FH“VLFFy 3000 m PV Electricity Generation (MWh/yr)
. - 2500 ~ 8 o O 0
“*Exception: building E, Smallest floor area 2000 g 2 = =
1500 o L "
= PV penetration: 75-100% and as low as 000 o B & B B8 % 8 O 3 5
~annnlanl: Mkl
30-40% in small and large buildings 0 N l l -
T T2 EaEErErEoeeoQ
JASHP vs GSPH 5 < 5 < 5 < 5 < 5 < 5 <
BLDG E BLDG B BLDG F BLDG D BLDG C BLDG A —
= Relatively similar performance despite 5.50
5.00 ——GSHP -=-ASHP
harsh weather 450 Heating- 40 °C
_ _ 4.00
* Lower Elec. consumption and Higher SCOP & 3.50
Y3.00
for GSHPs 550
2.00
1.50

-30 -25 -5 0 7 10 |5 25
OUTDOOR AIR TEMPERATURE °C



Case study 2- Dominion Bridge 2" Objective

13

Decentral GSHPs
VS

Central district heating and cooling (DHC) with GSHPs

UEnergy system design parameters
» Single Stage GSHPs

» System sizing for Peak demand and P=98%

Central GSHP

()]

[vs]

U Objectives

= Comparing Energy systems performance 6 A

* Energy system sizing - different demand
percentiles

* Network design — Heat loss calculation

Decentralized GSHP I




Case study 2- Results & findings

17% less electricity consumption in Central scenario

18% lower import from the grid in Central scenario

(Higher resiliency)

1 3 HPs less for DHC
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Case study 3 i

D ObjECtiVES Number of stories-units 3-20
Total floor area (m?) 2161
= 15t : DHW: (HP only) vs. (HP+electrical heater) Total Roof area (m?) 067
(23x29)

= 2M: Finding optimum slope for PV system using Python | @ccupantdensity (m*/person) 27
DHW demand (liter/day/person) 120

= 379 : Sensitivity analysis of heating supply temperature DHW storage factor {
DHW demand factor 0.3

DHW set point 40 C




~ Introduction  Literature  Methodology J€@SESEUGYL> Conclusion  Future Works  References
Case study 3- Hot water generation-Results 1

UDHW usage profile generated using DHW-Calc

DHW - Lit/hr

= 1.5 cubic meter hot water tank 0
450
= City water temperature of 10 C .
250

UHigher SCOP and seasonal performance factor*° _

NeIBEEEBRINBREERE
for HP ONLY Scenario HP + Electric b only
Heater
. . . Total EXCESSIVE ENERGY (kWh) 0 139,704
Despite having heat loss, higher COP of HP T ———— D g
- HP Electricity Consumption (kWh/yr) (DHW) 68,558 128,113
mak he diff
akes the difference Aux. Electric. Heater Consumption (kWh/yr) 94,116 0
Number Of Heat Pumps (DHW) 3 4
Seasonal Performance Factor 2.45 2.67

Y. Demand Y. Energy Produced
SCOP=

SPF=
Y. Energy Consumed for Meating Demand Y. Energy Consumed ‘



Case study 3- Optimum slope- Results .

AC Electricity Inverter Total PV

Slope . . . .
Generation Efficiency Generation
DINSEL and Python (degree) (kWh/yr) (%) (kWh/yr)
_ _ 0 70802 91.50 73809
» Text file, PyCharm and DEAP library 10 75641 92.41 78750 e
25 71808 93.14 74694 cround reflect 05
round reriectance .
165% roof area for PV 28 8033 | 9326 | 83549 _
29 80386 93.22 83601 ST 45.5
Optimizing AC electricity generation 30 80405 93.21 | 83623 Longitude | 73.62
31 80431 93.18 83650 Nominal Power (W) | 300
. - . - 32 80424 93.12 83644
» Considering inverter efficiency — — — — e | s
34 75859 92.98 78914 MPP Current(A) | 5.54
dResult: 31 degree
35 75801 92.94 78855 Efficiency (%) 17.24
) ) ) 40 70652 92.92 73486
= Despite 30,34,35,37 in literature Width (mm) | 1072
60 40737 91.14 42407
80 9706 90.54 10233 Height (mm) 1623
86 error error 3125
90 error error error




Case study 3- Sensitivity Analysis- Results i

Heating supply temperatures

= 30-55C -5Cincrement

dMin, max and average increase in

consumption for 5 degrees
" 4%, 20%, and 13%

= COP drops, average 11%

45 497 oo 0647 700000
40 3.78 459.938 478,735 ) 600000
500000
3.5 .
% 400000
" T 379,858 E 300000
25 337,741 ’ 3.10 295
261 200000
2.0 2.31 100000
.5 0
30C 35C 40 C 45 C 50 C 55 C

=@-HP Heating Seasonal COP =@=HP Electricity Consumption (kWh/yr) (Heating)

o



Conclusion 0

] UESMs contributing to existing and future energy strategies and policies

= Gaps: transparency, flexibility, low temporal resolution, etc.

J Automated flexible workflow introduced

» Demand calculation and energy system sizing
= Complete solution for heating, cooling and DHW
= Detailed model, applicable to various studies and scenarios

» Sophisticated analyses (Optimization, Sensitivity analysis) using Python libraries



Suggestions for Future works .

 Adding other energy systems (PV/T, Wind, CHP, Boiler, etc.)

 Considering inverter HPs

U Improving battery and thermal storage models
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