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What is happening Energy-wise?

Statistics Canada & Canada Energy Regulator:

ü20% of Quebec’s total energy use in Residential buildings
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Quebec Households’ Primary Heating System

Quebec’s 
Energy 
end-use



District Scale Energy Modeling

©MIT Sustainable Design Lab

City Scale Energy Modeling
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City Scale Energy ModelingSingle Building Energy Modeling
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Urban Energy System Modeling (UESM)

Single Building Energy Modeling
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§ Strategic Energy Planning
§ Greenhouse Gas Emission reduction

§ Sustainable Design

District Scale Energy Modeling

City Scale Energy Modeling



Urban Energy System Modeling (UESM)

qFrameworks for energy modeling, planning and policy making

§Different applications/ focus (Demand, Supply, Waste,...)

§Various Capabilities (Scale, Temporal Resolution, Technology,...)

§Different approaches (Benchmarking, Optimization, Simulation, …)
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Names of commonly used UESMs



Literature review – UESM

Author Overview Focus/ Finding/ Suggestion
Connolly et al. 

2010 [9] Explored 37 UESMs Proposing best UESMS fit for every application 

Sinha et al. 
2014 [10]

19 UESMs discussed in 
detail

Highlighted capabilities, limitations and future research 
areas of different UESMs

Ringkjøb et al. 
2018 [11]

Detailed review of 75 
UESMs

Categorized UESMs by general logic, spatiotemporal 
resolution and techno-economic parameters

Yazdanie et al. 
2021 [8]

Explored 30 review 
studies including 61 

UESMs

Fundamental review of gaps and improvement point in 
current tools

Hall et al. 2016 
[12]

Review of 22 
implemented UESMs

model purpose and structure, technological detail and 
mathematical approach
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Literature review – Gaps 6
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q Issues to be addressed in UESMs:

§ Lack of adjustable temporal resolution regarding the problem and available data

§ Lack of transparency and flexibility

§ Not modeling demand (demand is an input)

§ Inability to practice demand-side management strategies

§ Energy system sizing is not automatized / Input by the user

§ Not capturing Energy System Performance fluctuations in high temporal resolution



Research Focus- Objectives 7
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qProposing an automated, flexible and transparent workflow Capable of:

§ Adjusting temporal resolution

§ Integrating demand and supply side

§ Selecting and sizing detailed energy system model components to supply heating, 

cooling and domestic hot water

§ Practicing demand-side management strategies

§ Performing Optimization and sensitivity analysis



Proposed Workflow 8
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Heating- 40 
°С

Inputs – Outputs Roof Area (PV)
Number of PV Panels
AC & DC Power Generation

Heating & Cooling & DHW Demand Profiles
Heat Pump Heat Output
Number of HPs
HP Electricity Consumption
HP Supply Temperature
HP Seasonal COP
Heating Seasonal Factor

Panel & Inverter
Inverter Efficiency

Electrical & Thermal Balance
Heat Surplus/ Deficit

Elec. Heater consumption

Hot Water Supply Temp.
Return Temp
Return & Supply Flow rate
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qDominion Bridge district, Lachine, Montreal
§6 mixed-use buildings, 277,000 sqm, 90% residential, 10% office

qEnergy system design parameters
§ Low-temp heating / High-temp cooling
§ PV covers 65% roof area, Slope 31 degree

qObjectives
§ Energy positivity potential
§ Air Source & Ground Source HP
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Air Source vs. Ground Source Heat Pump

Case study 1– Dominion Bridge 1st Objective
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Case study 1–Results & findings 12

Introduction Literature Methodology Case Study ReferencesConclusion Future Works

qSizeable floor area vs. limited PV space

§ Foreseeable outcome: Energy Positivity

vException: building E, Smallest floor area

§ PV penetration: 75-100% and as low as 

30-40% in small and large buildings

qASHP vs GSPH

§ Relatively similar performance despite 

harsh weather

§ Lower Elec. consumption and Higher SCOP 

for GSHPs
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Case study 2– Dominion Bridge 2nd Objective 13
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Decentral GSHPs 
vs 

Central district heating and cooling (DHC) with GSHPs

qEnergy system design parameters
§ Single Stage GSHPs
§ System sizing for Peak demand and P=98% 

qObjectives
§ Comparing Energy systems performance
§ Energy system sizing - different demand 

percentiles
§ Network design – Heat loss calculation
§ Economic assessment

Central GSHP

Decentralized GSHP
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Case study 2– Results & findings 14

Introduction Literature Methodology Case Study ReferencesConclusion Future Works

q17% less electricity consumption in Central scenario

q18% lower import from the grid in Central scenario 

(Higher resiliency)

q 3 HPs less for DHC

qLevelized cost of energy varies 0.04-0.07 $/kWh, 

larger to smaller GSHP projects

qSystem sizing for P=0.99 & 0.98, saves 11 & 14 HPs 

compare to peak demand sizing
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Case study 3 15
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qObjectives

§ 1st : DHW: (HP only) vs. (HP+electrical heater)

§ 2nd: Finding optimum slope for PV system using Python

§ 3rd : Sensitivity analysis of heating supply temperature



Case study 3– Hot water generation-Results 16
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qDHW usage profile generated using DHW-Calc

§ 1.5 cubic meter hot water tank 

§ City water temperature of 10 C

qHigher SCOP and seasonal performance factor 

for HP ONLY Scenario

qDespite having heat loss, higher COP of HP 

makes the difference

SPF= ∑4%'1+5
∑ -+%./0 6)+*7'%5 $). 8%1&#+/ 4%'1+5

SCOP=∑ -+%./0 9.)57(%5∑ -+%./0 6)+*7'%5



Case study 3– Optimum slope- Results 17
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qINSEL and Python

§ Text file, PyCharm and DEAP library

q65% roof area for PV

qOptimizing AC electricity generation

§ Considering inverter efficiency

qResult: 31 degree

§ Despite 30,34,35,37 in literature



Case study 3– Sensitivity Analysis- Results 18
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qHeating supply temperatures

§ 30-55 C – 5 C increment

qMin, max and average increase in 

consumption for 5 degrees

§ 4%, 20%, and 13%

§ COP drops, average 11%
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Conclusion 19
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q UESMs contributing to existing and future energy strategies and policies

§ Gaps: transparency, flexibility, low temporal resolution, etc.

q Automated flexible workflow introduced

§ Demand calculation and energy system sizing

§ Complete solution for heating, cooling and DHW

§ Detailed model, applicable to various studies and scenarios

§ Sophisticated analyses (Optimization, Sensitivity analysis) using Python libraries



Suggestions for Future works 20
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q Adding other energy systems (PV/T, Wind, CHP, Boiler, etc.)

q Considering inverter HPs

q Improving battery and thermal storage models



Thank You! 
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