

Design for 3D Printing

A FAST AND EASY GUIDE TO
DESIGN AND PRINT 3D MODELS

Printing at the Technology Sandbox

FutureBound

Communication and Digital Capabilities Certification

- Undergraduate students
- Complete 4 activities
- Please sign registration sheet

SEP Design for 3D printing - In-person

18 Today, 2 p.m. – 4 p.m.

SEP Thinking critically about Al tools - In-person

26 Tuesday, 2 p.m. – 3:30 p.m.

SEP Arduino 101 - In-person

28 Thursday, 2 p.m. – 4 p.m.

SEP Become a concise communicator - In-person

29 Friday, 12 p.m. – 2 p.m.

OCT Expand your Excel skills: Intermediate - Online

10 Tuesday, 5 p.m. – 7 p.m.

OCT Public speaking bootcamp - In-person

√ 1
✓ Wednesday, 3 p.m. – 6 p.m.

OCT Intro to Python: Start programming - Online

18 Wednesday, 6 p.m. – 7:30 p.m.

Intro

5 min

Theory

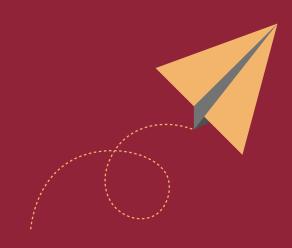
35 min

Activity

25 min

Recap & resources

15 min


Questions

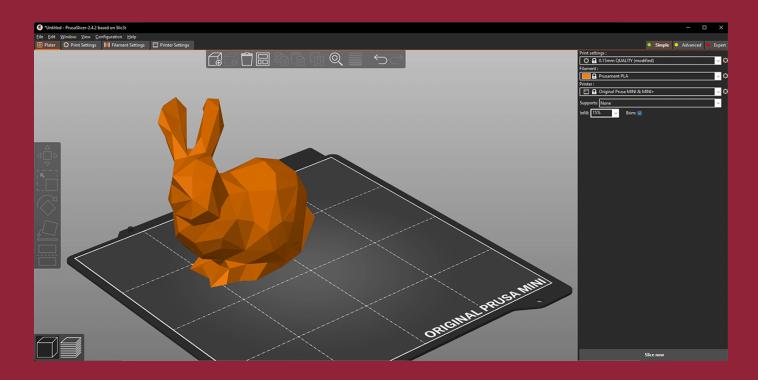
10 min

Workshop Objectives

By the end of this workshop, you will be able to:

Explain the basics of: - 3D Printing - 3D Design **Design** appropriately for 3D printing Modify an existing 3D design **Export** model for 3D printing

What is 3D Printing?


1. An additive manufacturing technology

Additive Subtractive

What is 3D Printing?

2. Computer controlled

What is 3D Printing?

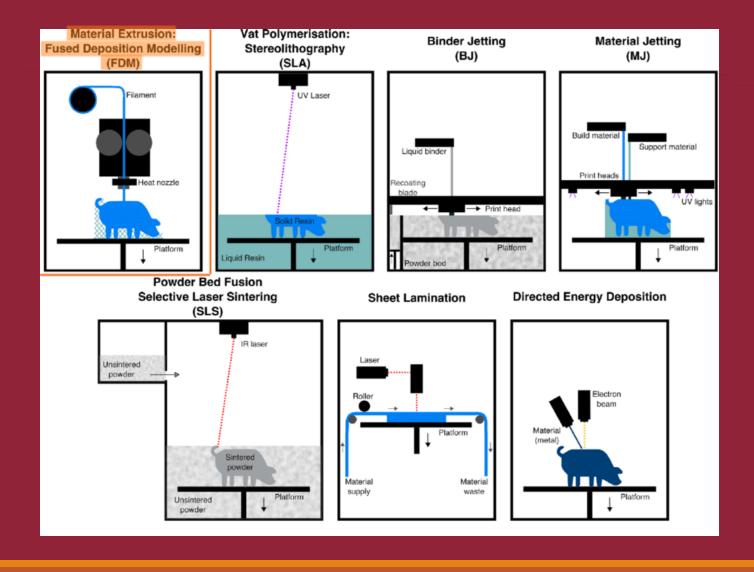
3. Printers use G-code, the most widely used computer numerical control programming language

GO X12 ; move to 12mm on the X axis

G Codes

G0, G1 - Coordinated movement X Y Z E G0 & G1: Move

In Prusa Firmware G0 and G1 are the same.


Usage

G0 [X | Y | Z | E | F | S]
G1 [X | Y | Z | E | F | S]

Parameters

- >
- The position to move to on the X-axis
- Y
- The position to move to on the Y-axis
- •
- The position to move to on the Z-axis
- .
- The amount to extrude between the starting point and ending point
- .
- The feedrate per minute of the move between the starting point and ending point (if supplied)

Types of 3D printing

Why 3D Print?

- Prototype a design for larger production
- Solve a unique one off problem
- Reverse engineer a broken part
- Aesthetics
- Troubleshoot your 3D design
- Print a test in PLA before producing in a more expensive material

What can you 3D Print?

- Figurines and models (architecture, DnD)
- Joining devices, hooks, attachments
- Artwork, sculptural pieces
- Organizers, containers, holders
- Puzzles and toys
- Casing and stands

Material choices

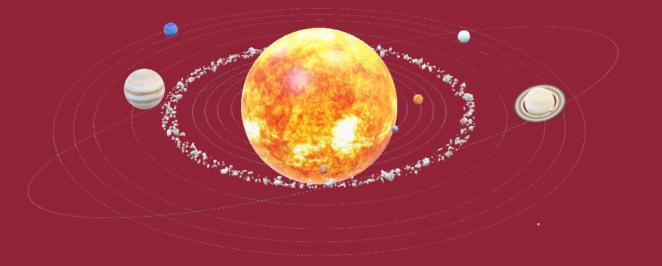
PLA – Safe, Cheap, Easy (free for students)

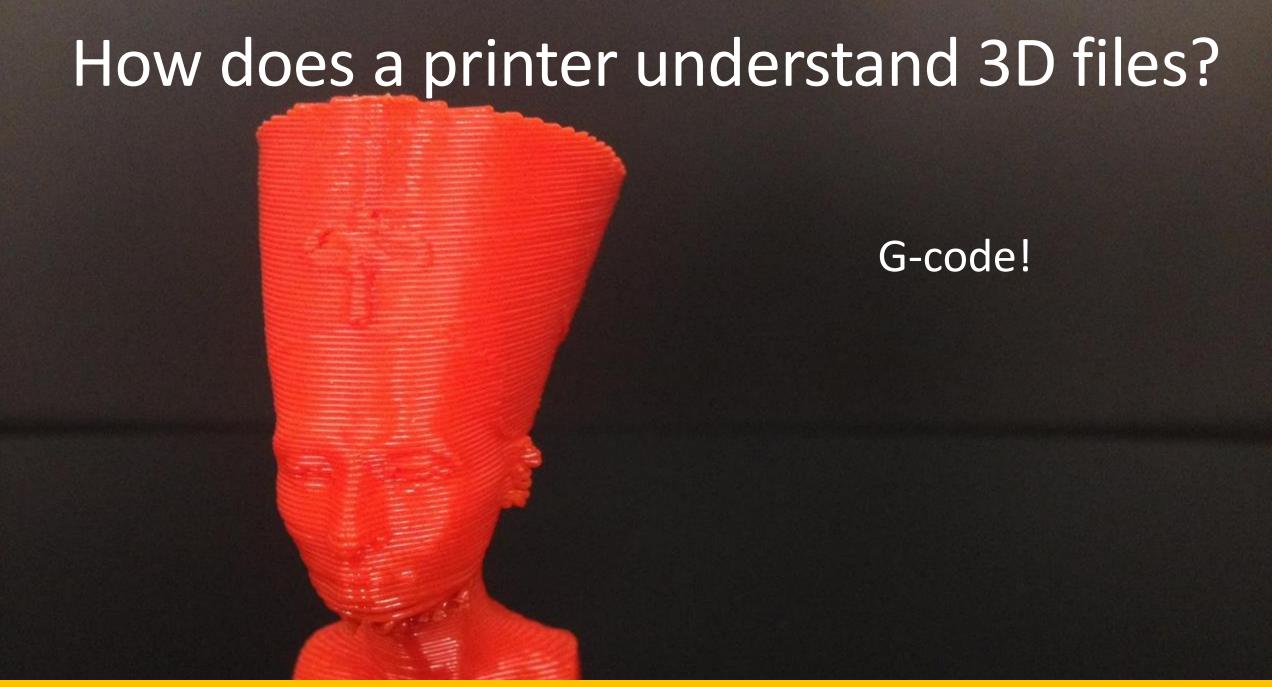
Outside the Sandbox:

- Other plastics (stronger, flexible, high rez) and resins
- Metals (cast or direct)
- 'Sandstone'
- Colors

Constantly evolving – look for local then Canadian options to save \$\$

What is 3D Design?


- Process of using computer-modelling software to create an object within a three-dimensional space
- Representation of a 3-dimensional object or shape
- End result is a 3D model


Why 3D Model?

- For 3D printing
- Other design applications, e.g., CNC mill, laser cutter, etc.,
- Video games
- CGI
- VR experiences
- Architecture
- Simulation purposes

What are some 3D file types?

- STL
- OBJ
- GLTF/GLB
- PLY (point cloud)
- FBX (Autodesk Filmbox)
- Many more conversions generally possible to some extent

Design considerations - FDM

- Overhang
- Rotation
- Support material
- Total size modularity
- Movement (Dynamic objects)
- Melt-ability

How can I design files in 3D?

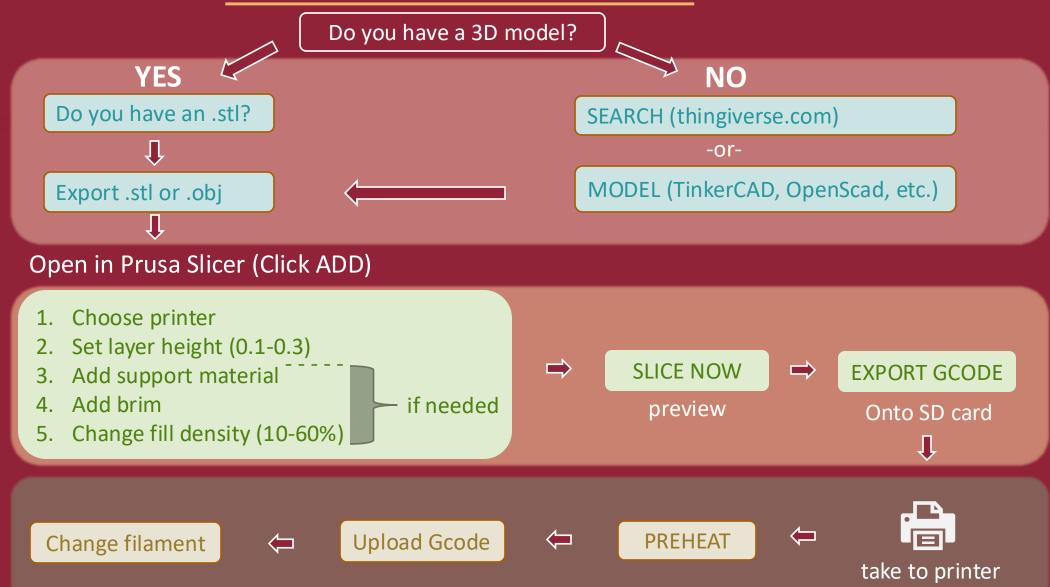
Make a TinkerCAD account:

https://www.tinkercad.com

... and Sign-IN

Follow the tutorials

- 3D designs, learn
- Starters: Place It!, View It! ...complete as many as you can
- 15 minutes to get to know the interface
- Drag and drop
- Easier with a mouse (but you can survive without)


Modify a Design

- Visit the Thingiverse.com site
- Locate a file you would like to modify (i.e. cellphone case you want your initials on)
- Ideally one part
- Download the .stl, import it into TinkerCAD
- Modify
- Export the .STL

Next Steps

- Bring your file on USB to the Sandbox to print
- Complete more tutorials in TinkerCAD
- Work on mods and mashups
- Design something from scratch
- Investigate different 3D modeling options –advantages and limitations

3D PRINTING GUIDE

What did we learn?

- Explain the basics of 3D Printing/3D Design
- Identify some common printer types and file types
- The 3D Printing services offered in the Technology Sandbox
- Identify the applications of 3D modelling; choose software that can meet your needs
- Find and modify 3D models
- Export models for 3D Printing

Tinkercad

OpenSCAD

Blender

<u>Sketchup</u> (changed ownership from Google to Trimble)

Udemy Concordia

Introduction to SOLIDWORKS

AutoCAD Beginners Course

3D printing start to finish with TINKERCARD & CURA software

3D Modelling 102: OpenSCAD

So you want to model things in 3D, but you're unfamiliar with how to do it or the software you're using doesn't give you the fine control you need? Come to our workshop. For this session, we are going to focus on building practical structures for lab environments. OpenSCAD is free, open-source software for detailed, programmatically defined, primitive based rendering software. If that sounds complicated, you will be pleasantly surprised at how easy and intuitive the software is once you get started.

No programming experience required (although it doesn't hurt).

Computer and software are provided, but to walk away even better prepared, feel free to bring your own laptop and have OpenSCAD installed on your computer before the session.

Speaker: Sean Cooney, Technology Sandbox Technician, Concordia University Library

Thursday, October 5 (2-4 pm)

Register here: https://concordiauniversity.libcal.com/event/3735423

3D Scanning

- Arctec Eva scanner
- iPads (Scaniverse application)

SANDBOX SHOWCASE - ARCTEC EVA SCANNER
Wednesday, September 20
2:30-2:50 pm

Information/inspiration

Thingiverse

Sketchfab (3D models, generally less for printing, some are paid)

Designs

SuperMod Is A 3D Printed Modular Wall System

Stool - 3D Printable Life Size Furniture

Space Fabric Cloth

Suppliers + commercial services

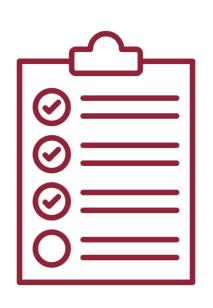
Prusa 3D Printers

Printers in the Sandbox

Creality 3D

Getting a lot of attention because of the price, Sandbox has not tested the quality

Filaments.ca


A filament suppliers we use for PLA

Shapeways

 Very large US based printing service. They are one of the oldest – local options would be cheaper and faster. This is a reference for the material selection not a recommendation)

Vocabulary

<u>Fused Deposition Modelling</u> – a very common and inexpensive type of additive manufacturing, building up layers by extrusion

Stereolithography (SLA)—type of vat photopolymerization

<u>Digital Light Processing</u> (DLP) –another tyle of vat photopolymerization

<u>Selective Laser Sintering</u> (SLS) – additive manufacturing that fuses polymer particles with a laser

<u>Selective Laser Melting</u> (SLM) – additive manufacturing that melts powdered metal into solid objects

TECHNOLOGY SANDBOX INFO AND RESOURCES:

LIBRARY.CONCORDIA.CA/TECHNOLOGY/SANDBOX/

(SUBSCRIBE TO OUR NEWSLETTER!)