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Abstract 

 

We document both theoretically and empirically a major dependence in both the Information 

Shares (IS) and Component Shares (CS) approaches to the estimation of the price discovery 

metrics on the errors arising out of the inversion method of the option value to find the implied 

stock price. We then introduce accurate inversion methods that result in a major increase in the 

information shares of option markets for both IS and CS metrics compared to the dominant 

Lagged Implied Volatility (LIV) inversion method. We apply these insights by examining the 

impact of the tick size reduction introduced by the CBOE in 2007 in its second pilot program on 

the simultaneous price discovery process in the markets for options and their underlying 

securities. In all cases we document a major impact of the tick size reduction in the option 

market that increases the option market information shares for all metrics and all inversion 

methods.   
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TICK SIZE, MICROSTRUCTURE NOISE AND VOLATILITY INVERSION 

EFFECTSON PRICE DISCOVERY IN OPTION MARKETS: THEORY AND 

EMPIRICAL EVIDENCE 

 

 

I. Introduction 

 

On January 26, 2007 the CBOE introduced the first phase of its experimental Penny Pilot 

Program for 13 option classes that reduced the minimum tick size to $0.01 for option series 

trading below $3 and to $0.05 for series trading above that level.
1
   Similarly, the tick size for all 

option series on the QQQ, the DFX and the XSP indexes was also reduced to $0.01. A second 

phase of the program was later introduced on September 28, 2007 and covered 22 additional 

option classes
2
 which are the subject of this study. Similar tick size reductions have been 

introduced and studied earlier in other financial markets. In almost all published studies the focus 

was on the effect that these changes had on market liquidity. These studies concluded that tick 

size changes did have some impact on various liquidity measures such as bid-ask spread, trading 

volume and market depth, but that its size and significance were unclear.
3
 

Tick size reductions are also expected to affect the price discovery process, since they have an 

obvious impact on the minimum size of price changes and the estimation of the error variances. 

Very few studies have dealt with this topic, and only one to our knowledge refers to option 

markets
4
. Yet, the effect of tick size reductions is expected to be particularly significant in option 

markets, given the fact that their liquidity is typically lower than that of corresponding equity 

markets.
5
 A major complicating factor in such discovery studies is the error introduced by the 

option price inversion method in order to compute the underlying price.  

 

In this paper we focus exclusively on the impact of the tick size and the volatility inversion 

methods on the price discovery process in the option and underlying asset markets. The main 

contribution of the study is to demonstrate the major impact that the option inversion methods 

have on the price discovery metrics in option markets. We show theoretically under plausible 

structural models of the inversion and microstructure errors, and with asset dynamics consistent 

with the available empirical techniques, that the errors introduced by the inversion methods 

reduce significantly these metrics. We develop test statistics that allow the assessment of the 

accuracy of an inversion technique under assumed asset dynamics of quite general type. We also 

present novel inversion methods that diminish the implied price error and allow for a more 

accurate estimation of the innovations that take place in the option market. In the empirical work, 

we show that, quite independently from the tick size reduction, these inversion methods result in 

                                                             
1
 CBOE Regulatory Circular RG07-09, Penny Pilot Program, January 18, 2007. 

2
 CBOE Information Circular IC07-150 SEC Approval of Penny Pilot Expansion, September 27, 2007. 

3
 See, for instance, Bacidore (1997), Bessembinder (2003), Bollen and Busse (2006), Jones and Lipson (2001), and 

other references discussed later on in the text. 
4
 See Chen and Gau (2009) for both futures and options. 

5
 The proportional option bid-ask spreads are typically more than twenty times as large as the equivalent spreads for 

the underlying assets, even for the most liquid index options; see also note 9. 
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major increases in the price discovery metrics of the option market as compared to the more 

traditional methods used in earlier studies. We also show that the tick size reduction results in a 

major increase in the option market discovery metrics for all inversion methods, the ones 

proposed in this paper as well as the traditional ones.  

 

Price discovery refers to the process by which new information is embodied in trading activity. 

For optioned stocks such discovery can take place either in the option market or in the market for 

the underlying asset. It is known that there are advantages and disadvantages in using the option 

rather than the underlying asset for price discovery, but there are few studies of such a process. A 

theoretical study by Easley, O‟Hara and Srinivas (EOS, 1998) develops conditions under which 

informed traders choose the option rather than the underlying asset market to exploit their 

informational advantages.
6
 Nonetheless, their results refer mainly to option trading volume as a 

signal for informed trading, without any analysis of the simultaneous pricing in the two markets. 

Other theoretical studies are by Biais and Hillion (1994) and Capelle-Blancard (2003). However, 

most of the related literature is mainly empirical, and even here there are again very few studies 

involving option markets.  

 

The price discovery process involving more than one market for the price of a given financial 

asset has been first analyzed in the pioneering work of Hasbrouck (1995), who developed the 

Information Shares (IS) approach.
7
 Hasbrouck assumes that new information in each market is 

embodied in a common efficient or “true” asset price, together with independent error terms 

around that price when it is observed in the various markets. He then focuses on a particular 

representation of this efficient price known as the Vector Error Correction Model (VECM), 

originally developed by Engle and Granger (1987). IS are defined as the contributions of each 

market to the total variance matrix of the permanent component of the efficient price, evaluated 

from the VECM. An alternative metric of this permanent component, the Component Shares 

(CS), was developed by Gonzalo and Granger (1995). Most studies have used primarily IS in the 

study of simultaneous pricing of cross-listed securities in two different markets.
8
 In our case it 

turns out that both measures yield virtually identical conclusions in all cases.  

 

As already noted, there are very few studies of price discovery in the context of simultaneous 

trading in stock and option markets. In spite of the stylized theoretical analysis in EOS, there are 

objective factors that make the application of the IS and CS metrics difficult and imprecise. First 

of all, option markets are generally characterized by lower liquidity and wider bid-ask 

proportional spreads compared to their equity counterparts. While trading takes place within the 

quoted bid-ask spread, the effective spreads that result from observed trades are also very wide, 

thus rendering the concept of a unique implied stock price difficult to define.
9
 Second and most 

important, the recovery of the underlying stock price from the observed option price is also 

                                                             
6
 The EOS model was applied empirically by Pan and Poteshman (2006). 

7
 Earlier empirical studies had adopted the lead-lag analysis, which is a less robust methodology for this study. For 

an example of such a study see Stephen and Whaley (1990).  
8
 See, for instance, Bacidore and Sofianos (2002), Eun and Sabherwal (2003) and Normandin (2004). For the 

relative merits of the two metrics see below, note 23. 
9
 In the option sample used by Khoury, Perrakis and Savor (2011) the average option price was $1.33 for the period 

2002-2004, while the quoted and effective average bid-ask spreads never fell below 0.16 and 0.13 respectively, 

yielding respective proportional spreads of 12% and 10%. By contrast, in Fleming et al (1996) the average spread 

for stocks in their sample was 0.58%.  
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fraught with imprecision, since the accuracy of the estimation depends on the implied option 

model. Note that these difficulties in the implied price estimation are peculiar to the option 

markets and do not affect, for instance, the futures markets, for which the inversion of the cost-

of-carry model is straightforward and does not involve unknown parameters or large errors.
10

 

 

In an important empirical study of price discovery in option and underlying stock markets 

Chakravarty, Gulen and Mayhew (CGM, 2004), established a methodological approach for the 

estimation of the IS according to the Hasbrouck (1995) analysis. CGM use the option bid-ask 

spread midpoint as an estimate of the option price. They still need the implied volatility in order 

to estimate the option implied stock price. Since using the contemporaneous stock and option 

prices to find the implied volatility would result in a tautology, they invert the option price using 

a half hour lag to estimate the implied volatility, thus assuming that this volatility remains 

constant during that lag. With the time series of the observed stock prices and options‟ implied 

prices, CGM estimated the Hasbrouck IS metric and concluded that the option market‟s 

contribution to price discovery was about 17% on average. We shall call the CGM inversion 

method the Lagged Implied Volatility (LIV) method. 

 

The main contribution of this paper is to demonstrate both theoretically and empirically that 

accuracy and efficiency of the implied price estimation method are fundamental for the 

estimation of the IS and CS metrics. We first show theoretically that any extraneous noise in this 

price will introduce a downward bias into these metrics.
11

 Given the importance of the accuracy 

of inversion methods, we develop a statistical framework to a priori appraise such methods. In 

deriving this framework, we assume the stochastic volatility dynamics for the underlying price
12

 

without using any equilibrium arguments necessary for the derivation of the option price. 

Specifically, we define the volatility of the implied price and its correlation with the option price 

in accordance with the observed option market dynamics but independently of the inversion 

method. We then compare these two parameters with those of alternative inversion methods. 

 

We demonstrate that the LIV inversion method as applied by CGM produces estimates of the 

option market‟s contributions to IS and CS that are as little as half their “true” measures.  We 

provide clear evidence that the source of this bias lies in the extraneous noise or the measurement 

error of the parameters‟ estimation inherent in the LIV inversion method. For this reason we 

apply smoothing to the parameters used in those inversion methods, which efficiently aggregates 

the microstructure noise present in point-in-time estimates such as the LIV method. We test this 

smoothing with simulated data and find that it eliminates the error arising out of the inversion 

                                                             
10

 For instance, Constantinides et al (2011) report that for 1990-2002 the S&P 500 index futures basis risk error was 

less than 0.5% for 95% of the observations.   
11

 This extraneous noise corresponds to the measurement error problem inherent in estimating the inversion 

parameters from the option price. This comes from the fact that the „true‟ option price is roughly uniformly 

distributed on a relatively wide segment of the bid-ask spread while the ‟true‟ underlying price is also distributed on 

some relatively narrow segment of its spread.  The inversion methods presented in this work are largely concerned 

with those measurement errors. 
12

 We assume the stochastic volatility framework to be sufficient for the objectives of this work since jumps either in 

the underlying security or in the volatility are rare events.  Carr and Wu (2009) derive relatively low estimates for 

the error resulting from neglecting jumps in deriving the variance swap rate from the option prices.   
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method, while preserving this microstructure noise of the option market which should play a role 

in the price discovery.
13

   

 

The smoothing we apply consists of using the median value for a set of the inversion parameters 

estimated within a lagged moving window relative to each time point of our implied price 

series.
14

 We apply this smoothing technique to the LIV inversion method and call the result the 

Median LIV (MLIV). We also we develop and apply an entirely new inversion method based on 

the assumption of the homogeneity of the option price with respect to the underlying and strike 

prices, which is preserved under most stochastic volatility and jump-diffusion models, termed the 

Homogeneity Inversion (HI), whose parameters are also smoothed. It turns out that both methods 

yield remarkably similar estimates of the implied price and, more to the point, remarkably 

similar results with respect to the contribution of the option market according to the IS and CS 

metrics. As noted earlier, this contribution is more than twice the estimate from the conventional 

LIV method. This is true both before and after the change in tick size.  

 

 

Turning now to the tick size reduction effect, we  begin with the theoretical studies of its impact 

on the affected financial market. Seppi (1997), Anshuman and Kalay (1998) and Sandas (2001) 

presented stylized equilibrium models of competitive market making in which tick size and other 

trading restrictions play a role. Surprisingly, the tick size reduction does not always result in 

more liquid markets in these models. As Seppi (p. 104) noted, the relation between the tick size 

and liquidity is non-monotone and discontinuous. Similarly, Anshuman and Kalay (1998) 

showed that a positive tick size is a barrier to competition in market making, which results in 

positive expected profits for market makers.   

 

Although there are several empirical studies on the impact of tick size reduction on price 

discovery in equity and futures markets
15

, only one of them, by Chen and Gau (2009), examined 

the role of options in this discovery. The authors use the CGM methodology for the inversion of 

the option price and examine the impact on the IS metric before and after the tick size reduction 

in the underlying Taiwan index tracking fund. They assess the impact of this reduction on the 

corresponding markets for the index tracking fund itself as well as for the markets of its options 

and futures.  The authors report that the tick size reduction in the tracking fund‟s market 

significantly increased its IS at the expense of both the futures and options. They attribute this 

finding to the lower transaction costs in the tracking fund induced by the smaller tick size. In 

addition to the new inversion methods and their impact on price discovery, our study provides 

the following empirical contributions over and above those of Chen and Gau (2009).  First, we 

provide a framework for an in depth analysis of the variability of information shares.  Second, 

we demonstrate that there is a high variability over time in the contribution of the option market 

to the price discovery, which implies that only a systematic comparative analysis made possible 

by our data can capture the impact of the tick reduction, free of other factors influencing this 

                                                             
13

 Note that - ideally - an inversion method should eliminate or at least significantly decrease the error of such 

inversion from the microstructure noise in the past observations for the option price, while simultaneously 

preserving this error at the inverted present observation. 
14

Data smoothing by using a running median achieves two important goals for the problem at hand: first, it 

aggregates the measurement errors on the inversion parameters; second, it deals with the expected non-normality of 

those parameters as opposed to a running mean.  See Bowman and Azzalini (1997).     
15

 See Section III for more details. 
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price discovery.  It also follows that the relatively large size of the sample we analyze allows 

drawing powerful statistical inferences.  Third, our results show that the conclusions that may be 

drawn from studying individual stocks are significantly different from those that may be drawn 

from studying indices or exchange traded funds. 

 

Other studies examining the impact of tick size reduction on price discovery in derivatives 

markets have dealt mostly with index futures. One such study examined the IS metric before and 

after tick size changes in the Chicago Mercantile Exchange (CME) Nasdaq-100 futures, both 

floor-traded and E-mini.
16

 This tick size reduction increased significantly the efficiency of 

trading in both types of futures, but it also resulted in an increase in the IS metric for the E-mini 

futures at the expense of the floor-traded ones. By contrast, another microstructure study of 

similar instruments following tick size reduction reached exactly the opposite conclusions, 

namely that the tick size change has reduced market efficiency, by discouraging arbitrageurs 

who provide liquidity to the market.
17

 These results reflect perhaps the ambiguity produced by 

the theoretical studies mentioned above. As noted earlier, such results are not directly related to 

our study, given the ease of inverting the futures expressions to estimate the implied price.  

 

The remainder of the paper is organized as follows. In the next section we present the price 

discovery model, including the IS and CS metrics, as well as our analysis of the new option price 

inversion methods in the context of the stochastic volatility option pricing model. Section III 

then presents the data and section IV the corresponding empirical analysis, which includes the 

comparison of the inversion methods with respect to the information shares of the option market, 

the impact of the tick size reduction and various robustness checks of the results; this section also 

includes a comparison with the results of previous studies. Section V concludes the paper. 

 

II. Methodology 

 

A fundamental issue in price discovery involving simultaneous pricing in stock and option 

markets is the inversion of the option price.  In the CGM study the LIV inversion method for the 

option implied price was largely motivated by „tautology avoidance‟, i.e. by the fact that no 

model may be estimated when the implied price is equal to the underlying price. In a variant of 

the Black-Scholes-Merton (BSM) model a lagged implied volatility was used to invert the 

present price of an option into its implied price.  Since the BSM expression was used merely as a 

translation device, this approach is free of the option model misspecification error.
18

 

Nonetheless, there is a major concern regarding this inversion method due to the empirical 

properties of its critical parameter, the lagged IV.  The “true” option price is unknown at any 

moment, and its value is generally proxied by the midpoint of the (extremely wide) option bid-

ask spread, which midpoint price obviously includes microstructure noise, as does the 

contemporaneously observed underlying price.  As a result, while the LIV method uses an 

unbiased IV estimate, the error variance of this quantity is expected to be high because of the 

aforementioned error components. This high error variance translates into noisy estimates for the 

implied price. 

                                                             
16

 See Kurov (2008). 
17

 See Chen, Chou and Chang (2009). 
18

 See Berkowitz (2010) for an asymptotic justification of the practitioners‟ BSM model, whose variant the LIV 

inversion method explores.  
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We begin this section with a detailed presentation of the error arising from the inversion method 

of the option implied price. This is followed by a detailed description of the econometric 

methods used to estimate the IS and CS metrics and then by a theoretical analysis of the impact 

of the inversion error on these metrics. Next we present a the framework for gauging the 

accuracy of the inversion methods under the commonly assumed model of stochastic volatility 

asset dynamics in option pricing. The section concludes with the presentation of two new 

inversion methods and their comparison with LIV. 

2.1 The impact of the inversion method on the IS Metrics 

Consider high-frequency time series of a derivative f and its underlying security S.  Hasbrouck 

(1995) and Gonzalo and Granger (1995) present econometric frameworks for the estimation of 

the contribution of each trading venue to the price discovery process for a single security traded 

in multiple venues.  Since either framework requires that the prices in those venues be 

cointegrated, we can‟t directly estimate the price discovery from the observables.  However, 

since the possibility of arbitrage closely links option and underlying security prices, the inversion 

of the option prices yields time series cointegrated with the underlying price with a known 

cointegrating vector. We denote this series by I: 

,t t tI h f ,                                                                                                         (1) 

where h(.) is a function yielding the implied underlying price and θ is a set of parameters 

necessary for the inversion, assumed known exactly. Since this is clearly not a valid assumption, 

empirical studies such as CGM and others approximate tI  by setting 
1ˆ(.) ,t S t tI h BSM f IV , 

with BSM and IV denoting the Black-Scholes-Merton price and implied volatility respectively, 

observed by necessity at some earlier time t-τ; this corresponds to an estimate ˆ
t  of t  Since the 

effect of this estimation is a major new element in this paper, we discuss at length the impact of 

possible estimation errors on the price discovery process further on.  

First we examine the estimation of the IS and CS metrics.  For some well specified inverting 

function h(.) we have the following order-one cointegrated price vector: 

,

,

t S tt

t

t t I t

ES
P

I E
.                                                                                          (2) 

In (2) E denotes the (unobservable) common efficient price,
19

 which is assumed to follow a 

random walk:  

                                                             
19

 The order-one cointegration follows from the assumption that there is a single common trend, the efficient price.  

See Stock and Watson (1988). 
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1t t tE E v ,                                                                                                         (3) 

where ( ) 0tE v , 2 2( )t vE v  and ( , ) 0t sE v v for t s . The error terms ,S t and ,I t represent 

transient microstructure effects, namely random variables with zero mean whose k-th order 

autocovariance matrices depend only on k.  Then, under the Granger Representation Theorem we 

have the following Vector Error Correction Model (VECM) specification: 

'

1

1

l

t l t i t i t

i

P P A P e ,                                                                             (4) 

where and  are [2x1] matrices respectively containing adjustment parameters and 

cointegrating vectors, the [2x2] matrices iA  describe the short-term dynamics of the process, l is 

the optimal number of lags. We also denote by  the covariance of the serially-uncorrelated 

error terms te . The term '

1tP  represents the equilibrium dynamics between the prices.   

The IS metrics are derived by a decomposition of the random walk variance, which may be 

estimated even though the common efficient price is not observable: 

2 '

RW ,                                                                                                         (5) 

where  are the (identical) rows of a [2x2] matrix  given by 
20

 

1

' '

1

1 0

0 1

l

i

i

A ,                                                                (6) 

the [2x1] matrices  and  are non-trivial orthogonal complements to  and  in (4) and 

the iA  matrices are as in (4).
21

  The IS metric for a given market is defined
22

 as the proportion of 

the random walk variance that is attributable to the innovations in that market.  If the covariance 

matrix  is diagonal, then we have a clean decomposition into contributions of each market to 

the total variance of the permanent component, with the contribution for the j-th market equal to 
2

2

j jj

RW

. This diagonal property will hold if the underlying random walk hypothesis is well 

satisfied by the data, i.e. if there is little contemporaneous correlation between the residuals in 

(4).  If the off-diagonal elements are non-zero, which is the prevailing case in empirical work, 

then we apply the Cholesky decomposition to the covariance matrix  and derive the lower and 

upper bounds on IS since this quantity varies with each ordering of variables in the Cholesky 

decomposition.    

                                                             
20

 See Johansen (1990). 
21

 See Johansen (1995) for the estimation methods of these orthogonal complements.  Note also that by using (6), we 

avoid estimating the matrix  via an impulse-response function with a priori unknown convergence properties.  In 

fact, for our data those functions may require an excessive number of iterations to achieve any reasonable 

convergence.    
22

 See Hasbrouck (1995). 
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The Gonzalo and Granger (1995) decomposition into the permanent and transitory components 

starts with the same VECM model (3). Then we have the following decomposition of the price 

vector: 

1 2t t tP C g C Z ,                                                                                                    (7) 

where tg  and tZ respectively represent the permanent and transitory components, 1C and 2C are 

loading matrices, and '

t tg P  and '

t tZ P  with  and  as before.  Note that here the 

efficient price and the integrated of order one permanent component tg  need not be random 

walks.  Of interest to us is the [2x1] matrix .  Under the additional assumption that tZ  
 
does 

not Granger-cause
23

 tg
 
this matrix may be identified up to a non-singular multiplication matrix.  

The interpretation of the permanent component tg  is that it is a weighted average (linear 

combination) of the observed prices with the component weights in .  Booth et al. (1999) and 

Harris et al. (1995) suggest measuring price discovery by using CS normalized to 1.  The 

interpretation of the CS metric is that the market, which reacts the least to the innovations in the 

other market, will display the highest relative weight in the permanent component.  An attractive 

feature of the Gonzalo-Granger (1995) approach is that statistical hypotheses may be tested by a 

χ
2
(1) test, which we apply in our empirical work.   

To assess the effect of the inversion errors in the option market metrics we need to provide some 

structure to the error terms ,S t and ,I t  of the time series ( tS , tI ) and their relationship to the 

random walk. We use two alternative such structural models. In the first one there is no informed 

trading and the error terms are mutually independent random variables and independent of the 

random walk term tv , with respective variances
2

S and
2

I . The second one is a modified version 

of a model presented in Hasbrouk (2007, Ch. 9), itself an adaptation of the Roll (1984) 

microstructure model, that recognizes the presence of informed trading and possible momentum 

effects. Our main result holds under both assumptions, but our detailed proof will be given under 

the simpler assumption that ,S t and ,I t are time-independent and uncorrelated random error 

terms; in such a case the inversion error ,
ˆˆ , ,I t t t t th f h f  can be considered part of the 

term ,I t . 

Under the Hasbrouk-Roll model the randomness of the microstructure noise affects the efficient 

price revisions tv , which becomes now the sum of a pure random walk term tu  and a component 

driven by the direction of trade. Following Roll (1984), this direction is represented by the 

variable tq , which determines both the location within the bid-ask spread, but also possibly 

reflects private information and affects, therefore, the efficient price. The two components of the 

time series ( tS , tI ) have each one its own revision proportional to the direction of trade. 

Analytically, while (3) still holds we now have: 

ˆ,  ,  ,  t t t t t t t S t t t I t Itv u w q w S E c w I E c w .   (8) 

                                                             
23

 See Granger (1980). 
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In (8) the inversion error term ˆ
It , with 

2ˆ ˆ ˆ ˆ ˆˆ( ) 0,  ( ) ,  ( ) 0,  ( ) 0 0It It It t It It jE Var Cov v Cov j , cannot be incorporated into the 

implied price error. Nonetheless, for both models (2)-(3) and (2)-(8) we prove in the appendix 

the following result.  

Proposition 1: The higher the variance of the inversion error ˆ
It the lower the information shares 

attributed to tI  in both models (2)-(3) and (2)-(8).        

As noted earlier, the parameters of the structural model are not observable, and the price 

discovery effects have to be assessed through the IS and CS metrics evaluated from (4). To 

compare these metrics, we note that IS measures the impact of innovations on the random walk 

variance, whereas CS is concerned with the linear impact of the innovations.  It appears that the 

IS metric is more popular in the market microstructure literature; however, in a recent study, Yan 

and Zivot (2010) recommended using both metrics because the IS metric is subject to 

microstructure noise from high frequency data.  In addition, CS does not rely on the random 

walk assumption, which is usually not satisfied by the data.
24

 

To estimate system (4), which forms the basis for the estimation of our metrics, we use the 

Johansen (1990) maximum likelihood approach.  Gonzalo (1992) examined five alternative 

estimation methods for VECM and found that the empirical estimates may vary considerably 

across those methods in spite of the superconsistency of each method, with clearly superior 

properties for the Johansen (1990) method. Before proceeding with the estimates, however, we 

must deal with the error inversion issue, which in view of Proposition 1 needs to be addressed. 

The procedures used are explained in the following subsections.  

2.2  Assessing the accuracy of the inversion methods 

We evaluate the accuracy of the inversion methods applied in this paper under the assumption of 

stochastic volatility asset dynamics.  As argued in the introduction, we assume that it is a 

sufficient framework for the analysis of the inversion problem. The state variables, that is, the 

underlying price S and its volatility σ vary according to the following bivariate diffusion: 

1

2

2

1 2cov ,

t t t t t

t t t

dS S dt S dw

d dt dw

dw dw dt
      

(9) 

                                                             
24

 There is an ongoing debate in the market microstructure and the related econometric literature about the relative 

merits of the Hasbrouck (1995) and Gonzalo and Granger (1995) approaches.  As De Jong (2002) points out, CS for 

a given market ignores the variance of an innovation in this market while it measures the weight of this innovation 

in the increment of the efficient price. On the other hand, IS measures the share in the total estimated variance of the 

efficient price contributed by a given market.  
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where 1 2,dw dw are elementary Wiener processes and t  
is a function at most of the stock price, 

while the parameters t and t are generally functions of t but not of tS .
25

 By applying Ito‟s 

lemma to a derivative tf  resulting from (9) by an unspecified risk neutral valuation process and 

dividing both sides by the derivative price ft we have: 

( ) ( )

1 2/  other terms /S

t t t t t t t tdf f f S dw f dw f ,                                        (10) 

where we use only those terms that contribute to the quadratic and cross variations, the „other 

terms‟ clearly do not contain either Wiener process, and with the superscripts in parentheses 

denoting partial derivatives.  Those „other terms‟ will vanish in all further derivations. 

Now we state two lemmas proven in the Appendix that establish statistical benchmarks by which 

we assess the accuracy of the inversion methods applied in this paper. To empirically apply the 

first of these two lemmas, we assume in addition that under the risk neutral transformation of the 

stochastic volatility asset dynamics (9) the option price is linear homogeneous in ( , )tS X , where 

X denotes the strike price. This implies that the following relation holds: 

( ) ( )S X

t t t tf f S f X
        (11)

      

 

Lemma 1   

Under the state dynamics (9), the homogeneity assumption and the range of values of our data, 

we have the following approximate relation for the volatility of the implied price ˆ ( )I as a 

function of the realized volatility of the option price returns ˆ /df f : 

ˆ ˆ /I df f  ,                                                                                            (12) 

where for a given contract-day,  represents the daily median of ( )| |Xf f f X , with ( )Xf  

estimated by (10) and we use the square root of the realized variance
26

 as the estimate for the 

option return volatility.    

Since (12) is an approximation, we cannot test formally for the differences between this 

benchmark and the observed volatility of the implied price derived by the inversion methods 

applied in this study; however, we consider it plausible that a „good‟ inversion method will result 

in a tight spread around this benchmark quantity. 

Lemma 2 

                                                             
25

 It is possible to state a more general stochastic volatility process with respect to the functional dependence of the 

parameters of this process.  The presented specification is consistent with the homogeneity assumption implied by 

the HI inversion method.  See Bergman at al. (1996) for the general properties of the risk neutral stochastic process 

arising out of (9). 
26

 To estimate the realized variance, the relevant literature recommends using longer time intervals than the one-

second frequency in our data because of the microstructure noise present in high-frequency data (see Andersen at al. 

(2002) for a survey).  In our estimate we use this one-second frequency since the microstructure noise clearly plays a 

role in our estimates of the implied price.   
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Under the state dynamics (9) and without restrictions on the parameters of the process, we have 

the following relation between the correlation of the implied price with the underlying price IS  

and the correlation of the derivative price with the underlying price
fS

: 

IS fS
 .                                                                                                          (13) 

Since the sample counterparts of the quantities in (13) may be easily estimated from the data, 

Lemma 2 establishes a powerful statistical benchmark to assess the accuracy of the inversion 

methods. In the following subsections, as well as in Section IV, we use Lemma 2 in numerical 

results demonstrating the superiority of our proposed new inversion methods over LIV. 

    

2.3 Volatility Inversion Methods 

As noted in the beginning of this section, the key observation leading to an improvement over 

the LIV inversion method is the fact that the parameter set θ as defined in equation (1) is subject 

to measurement error. This error is distinct from errors arising out of microstructure effects such 

as, for instance, the tick size in the option market.
27

 We also saw that the error in measuring θ 

reduces the price discovery metrics for that market.  

Unlike microstructure noise, the parameter measurement error arising out of the volatility 

inversion does not belong to the discovery process and needs to be eliminated. The “optimal” 

parameter measurement is by polynomial fitting of the cross section of options on the same 

underlying asset at any given time with respect to the strike price and time to expiration;
28

 we 

term this method the Regression Implied Volatility or RIV.  Unfortunately, RIV cannot be 

applied uniformly to our data set, since the number of available options differs between stocks; 

further, the computational burden is prohibitively heavy if we want to do data smoothing. For 

this reason we examine this method only as a benchmark and discuss its performance further on 

in this section.  

We deal with the measurement error problem by data smoothing,
29

 which leads to canceling out 

or aggregation of the errors on θ.  In practice, the data smoothing we apply consists in using a 

running median for the inversion parameter set θ rather than a single lagged observation.  The 

use of the median is motivated by its ability to deal with the non-normality and with possible 

data errors (outliers) that may still be present even after the screening that we apply. The relative 

performance of the smoothing technique in reducing the volatility inversion error while leaving 

the microstructure error unaffected is examined in the next subsection.  

In our first inversion method we apply our smoothing technique to LIV and term this method 

Median LIV, or MLIV.  The second method we propose uses the property of homogeneity of the 

option price with respect to the underlying and the strike prices, which holds under most pricing 

models.  We also show that our inversion methods compared to LIV admit shorter estimation 

                                                             
27

 We discuss the distinction between these two types of errors further on in this section.   
28

 This was first applied by Dumas, Fleming and Whaley (1998). See also Christoffersen, Heston and Jacobs (2010) 

and Berkowitz (2010). 
29

 See Bowman and Azzalini (1997).     
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windows, thereby allowing the incorporation of more variability in the unobservable state 

variables.  At any time we observe simultaneously a stock price tS  and a cross section of 

options with a common maturity but differing with respect to their strike prices.  For any option 

in a given cross section (except for the two extreme strike prices), the two neighboring options 

may be used to estimate the partial derivatives, ( )X

tf and ( )S

tf . Once we have these estimates for 

the partials from past data, we may then easily invert (11) for the implied price tI .  We have from 

(11) for any ,..., 1t M t :  

( ) 1
2

( ) ( )

( ) ( )

and

1
,  or 

X

S X

S X

f f X X f X X X

S
f f f X S

f f f X

,     (14) 

By inverting (9) and using (10), we have the following formula for the implied price: 

( )

( )

X

t t
t t t tS

t

f f X
I a f b X

f
,                                            (15) 

where for a given moving window length M , ta  and tb
 
are the respective medians of 

( )

1
Sf

and 

( )

( )

X

S

f

f
 as derived by (14), ,..., 1t M t .  Note that the implied price under this inversion 

approach has a meaningful interpretation as a portfolio composed of t  options and t X  in the 

money market account.  In empirical applications, where we use the average implied price 

derived from several options, this portfolio interpretation holds, in this case as a portfolio of 

options with unequal weights and the money market account. 

The choice of the length of the moving window to estimate the inversion parameters involves 

balancing several opposing effects. For the main results of this paper we used a five minute 

window, with 300 past observations in one-second intervals to estimate the inversion parameters. 

Such a relatively short time interval that allows sufficient aggregation of the microstructure noise 

appears to be the optimal choice for the problem at hand.
30

 

 

 2.4 The Relative Performance of the Volatility Inversion Methods 

As noted, a volatility inversion method must minimize the parameter measurement error while 

leaving intact the microstructure error. In order to test whether the proposed inversion methods 

                                                             
30

 The risk of inducing a serial correlation in the error of the efficient price in equation (2) is small since by 

construction the time series of the inversion parameters is smooth. Further, the optimal number of lags in the VECM 

model  (3) is low, with the length of the time interval to estimate the inversion parameters varying between 60 and 

1800 seconds.  

t
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achieve this objective we use simulations that mimic more or less the characteristics of our data. 

In such simulations we first assume the parameters known and use an option pricing model 

yielding a closed form solution. In that model we introduce microstructure error arising out of 

the minimum tick size and examine the correlations between the underlying and implied prices. 

Next, we assume that the option price parameters are unknown and compute the implied price 

series according to one of the volatility inversion methods under consideration. A “satisfactory” 

inversion method should produce implied price series that satisfy Lemmas 1 and 2 and have 

similar correlations with the underlying price series as the ones arising out of the microstructure 

noise when the parameters are known.  

For the simulations we choose the Heston (1993) model, which is the most popular stochastic 

volatility model in option pricing and has a closed form solution. In that model the stock price 

instantaneous mean is constant, while in (9) t is mean-reverting and t is proportional to t . 

The model is an “incomplete markets” one, which admits a closed form solution only if we 

assume that the market price of volatility risk is proportional to t . We use the following 

parameters for the base case: initial volatility equal to its long-term mean of 0.3, volatility of 

volatility 0.4, speed of mean reversion 1, correlation of Wiener processes -0.6, riskless rate 4%, 

stock drift 8%, price of volatility risk -5% and initial underlying price 100.  

For the simulations 300 paths for the stock were generated in one-second intervals for one 

trading day, which is some 31,000 seconds.  For these paths 15 option prices valued according to 

the Heston (1993) model ('true prices') with strikes and maturities described in the tables below 

were generated.  In the second step, the prices for tick rules of 0.05 (below $3) and 0.1 (above 

$3) were generated.  For the tick-adjusted or quoted midpoint prices, this price at time t was set 

equal to the quoted midpoint price at t - 1 unless the midpoint price was at least one tick away 

from the model price.  In this latter case the quoted midpoint price moved by a minimal number 

of ticks so as to at least exceed (be below) the 'true' price for an upward (downward) movement 

in the model price. 

In the above setup it is apparent that the true implied price is simply the underlying price, since 

there is no model or parameter uncertainty and the sole factor that may cause those prices to 

diverge is the presence of frictions in the option market; we assume that there are no frictions in 

the underlying market.  The prices were inverted for HI, LIV and MLIV model with the interval 

or lag of 300 seconds.  In addition, the RIV model in the spirit of Berkowitz (2010), and 

Chrsitoffersen et al (2010) was applied.  In that model, for the same lag as for LIV, we fit a least 

squares regression of the implied volatility (IV) against a constant, the time to maturity, the 

strike price, and the squares of the latter two variables; finally, the fitted value for IV at time t 

was used for the inversion. The results for the performance of the inversion methods are 

presented in Tables 2.1 and 2.2 below, with nine contracts used for HI inversion for each 

maturity since we need to discard two contracts, while all 15 contracts were used for the 

regression necessary for RIV inversion.   

[Table 2.1 approximately here] 
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[Table 2.2 approximately here] 

 

In Table 2.1 the benchmark (12) was adjusted to account for microstructure noise, since it was 

estimated by using the time t values of ( )| |Xf f f X that contain that noise. The MLIV results 

are very close to the approximate benchmark (12) at the contract level in all cases, while the HI 

results are somewhat higher and the LIV and RIV results are much higher in all cases. On the 

other hand, at the aggregate level for all contracts the HI result is very close to the true volatility, 

while the MLIV is somewhat lower and the other two methods much higher. The results in Table 

2.2 are even more interesting. First of all, we observe that in the absence of frictions the 

correlation between the derivative price and the underlying price is very close to 1 in all cases, as 

in the BSM model; this implies that the latter model, with its random walk assumption, may 

approximate quite well the more complex Heston model asset dynamics from the price discovery 

point of view. Second, the microstructure noise arising out of the minimum tick size lowers 

dramatically the size of the correlation fS , thus illustrating the importance of microstructure 

noise in the price discovery metrics. As for the correlation IS  and its consistency with relation 

(13) of Lemma 2, we observe that the MLIV results satisfy it with equality in almost all cases, 

while the HI results are somewhat lower and the LIV and RIV much lower than fS in all cases; 

the latter results are also very similar to each other.  

The results of Tables 2.1 and 2.2 remained qualitatively almost completely unchanged when the 

initial conditions were varied within the Heston model. Setting the initial volatility to 0.6 rather 

than 0.3 showed again that the MLIV method performed best and was very close to the 

benchmarks (12) and (13), while HI performed slightly worse and the other two methods much 

worse. We also varied the initial stock price to 300 and 1000 and again observed that the 

correlation fS performed as expected: it remained close to 1 in the absence of the tick size 

frictions, while it fell when the tick size was introduced; the drop was much lower at the price of 

1000, reflecting the fact that the option prices were also much higher.
31

 We conclude, therefore,  

that our moving window data smoothing achieved its objective of preserving the microstructure 

noise while eliminating most of the volatility inversion errors. Further, there is little or no 

improvement to be achieved by the polynomial fitting of the RIV method, which allows us to 

avoid the heavy computational burden of data smoothing in this case.  

         

Figure 1 provides a graphic example of the implied prices derived by the HI and MLIV methods 

compared to the LIV method.  The figure also plots the midpoints of the option and underlying 

prices.  It is clear from the figure that the HI and MLIV implied prices change only because of 

the changes in the option price as we may expect a priori, while it is apparent that the implied 

                                                             
31

 The results are available from the authors on request. 
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price for the LIV method contains variability not justified by the option dynamics.  For instance, 

we observe a large variability in the implied price for the LIV inversion for the flat segments in 

the option price; we also observe directional changes for this method when the changes in the 

call price conform to short lived demand/supply imbalances resulting in the widening or 

narrowing of the bid-ask spread shown in the graph as the call price bounces back and forth 

around the same level.  These anomalies, which clearly reflect the option dynamics, don‟t appear 

in the implied prices derived by the HI or MLIV methods.  

 

[Fig 1 approximately here] 

 

 

 

III. Data  

 

Data for this study cover a 13 month period spanning from January 2007 to March 2008 

inclusive, and includes tick by tick quotes on options and their underlying securities.  More 

specifically, the main data set is comprised of 20 option classes out of 24 included in the second 

CBOE pilot program mentioned in the introduction and their corresponding underlying 

securities.  Two option classes, namely Dendreon Corp. (ticker DNDN) and Financial Select 

Sector SPDR (ticker XLF), were dropped from the sample because a substantial number of days 

were missing in the CBOE tape.  In addition, the Dow Jones (ticker DJX) and the mini S&P 500 

(ticker XSP) option classes were also dropped because the underlying data is reported 

approximately every 10 to 15 seconds, which precludes applying the VECM model on a one-

second interval. Moreover, as mentioned in the introduction, the assets underlying the last two 

option classes are non-tradable, whereas our study focuses only on options with publicly tradable 

underlying assets.  

We included in our sample options maturing between 8 and 120 days.  The data was first 

screened for standard arbitrage violations, excessive bid-ask spreads and excessive implied 

volatility.
32

 Also, we screen out the contracts for which in a substantial proportion of quotes we 

observe  or , since the option prices whose bid and ask prices 

bracket the early exercise value are not informative. Since in our final sample we included only 

close to ATM options, the above screening took place only for a limited number of close to 

maturity contracts.  Note also that the presence of dividends has little effect in our data since the 

only optimal time to exercise a call option is at the end of the last cum dividend day. 

                                                             
32

Our screens resulted in discarding less than 0.5% of the option quotes. 

A A Bc S X c A B Bp X S p
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One-second time series were then constructed for options and their underlying securities. Gaps in 

the data were filled out with the last available quote. Finally, implied prices were derived for the 

three nearest to the money call or put options for each maturity within the above limits.  The 

final restriction limited the moneyness of the included contracts, defined as the daily mean of the 

ratio of the strike to the underlying prices, to a range of 0.9 to 1.1.  Altogether, the data includes 

273 trading days or 13 calendar months.  More specifically, for the period before (after) the 

policy change, the data includes 146 (127) trading days, 2940 (2520) company-days and 38673 

(36470) option contracts.  Table 3.1 presents the description of the underlying securities in our 

sample. 

A comparison sample was also constructed using the same sampling approach.   This comparison 

sample is composed of the same number of randomly selected option classes where all available 

classes in the Option Metrics database were first filtered according to the following criteria: i. the 

total volume of transactions of the option class is no higher than that of the most traded class in 

the main sample and no lower than that of the least traded, ii. the class remains actively traded 

during the entire period under study.  

 

[Table 3.1approximately here] 

 

Table 3.2 presents the descriptive statistics of the main and control samples for the 7months 

before and the 6 months after the minimum tick size reduction was implemented. The table 

shows that both quoted and effective spreads declined in a statistically significant manner after 

the minimum tick size reduction was implemented.  It is important to note that prior to the 

change the differences in spreads between the main and control samples were not statistically 

significant either for quoted or for effective spreads. These last results provide further evidence 

of the effect of the minimum tick size reduction on transaction costs in option markets.  Overall, 

these findings are consistent with those reported for equity markets by, among others, Henker 

and Martens (2005), Bessembinder (2003), Ronen and Weaver (2001), Foucault (1999), and 

Bollen and Whaley (1998) and for futures markets by Kurov (2008) who found that the reduction 

in the minimum tick size reduced the effective spreads for the floor traded and the electronically 

traded E-mini Nasdaq 100 index futures
33

.     

[Table 3.2approximately here] 

 

                                                             
33 

On the other hand, Bollen and Busse (2006), Chakravarty et al (2004), Graham et al (2003), Jones and Lipson 

(2001) and Harris (1994) suggest that the reduction in tick size can increase the cost for liquidity providers thus 

adversely affecting the bid-ask spread.3  
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The results in table 3.2 also indicate that the reductions in spreads were accompanied by 

corresponding reductions in the sizes of the quotes. More specifically, the table shows that both 

the bid and ask quote sizes of the option classes included in the pilot project decreased 

significantly after the minimum tick size reduction was implemented, while the corresponding 

sizes increased moderately and non-significantly for the option classes in the control sample.  

This preliminary result is consistent with the findings reported by Bacidore (1997) for the 

Toronto Stock Exchange subsequent to decimalization.  

 

These introductory results provide a preliminary indication of the importance of the tick size 

change on transaction costs and the efficiency of trading. In the traditional analyses such 

liquidity and efficiency changes should not have affected the price discovery process in the 

markets for options and their underlying securities, given that price discovery is assessed at the 

midpoint of the bid-ask spread. In our case, though, these efficiency changes reduce the errors of 

the option inversion process and, thus, are expected to improve the information share metrics. 

However, before turning to this issue, it is also interesting to note in table 3.2 that the pilot and 

non-pilot samples exhibit statistically significant differences in price and volume levels, while 

their volatility levels are approximately equal prior to the tick size change. All three variables are 

significantly different between the samples after the tick change. Similarly, price, volume and 

volatility levels all increased after the tick size reduction regardless of the pilot project, reflecting 

the general market environment at the time of the pilot project‟s implementation.  

 

 

IV. Empirical analysis 

 

To derive our main results we use a five-minute moving window (or lag) of data for the 

estimation of the parameters of the inversion methods.  Results for other time-frames that we 

used are presented as robustness checks. 

4.1 Accuracy of Inversion Methods 

In this section we present the accuracy of the inversion methods relative to the two benchmarks 

(12) and (13).  Apart from assessing the merits of the two methods proposed in this paper relative 

to LIV, the empirical results are of some interest since to our best knowledge our study is the 

first to assess the implied price a priori.  We focus our presentation on the standard errors of the 

observed quantities; specifically, we present the descriptive statistics for the following 

standardized differences from the benchmarks, or t-stats: 

 ,        (16) 
( )

Q B
t

SE B
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where Q is a given quantity for the implied price, B is the benchmark for this quantity and SE(B) 

is the standard error for a given benchmark.
34

  We derive the results of the implied prices for all 

the option contracts used in our study separately for the periods before and after the minimal tick 

policy change
35

.   

Table 4.1 displays descriptive statistics for the correlation between the implied and underlying 

price.  These results show that the MLIV and HI methods provide a viable alternative to the 

standard inversion using lagged implied volatilities.  The correlations are presented for the 

various inversion approaches applied both before and after the change in minimum tick size. The 

primary results show that the LIV method performs poorly compared to MLIV and HI because it 

clearly underestimates the correlation between implied and actual equity prices.  Moreover, the 

LIV inversion method clearly biases downward this correlation, with a large proportion of option 

contracts with implied prices having a correlation significantly below the benchmark (13).  For 

HI and MLIV methods the data falls in a tight interval around the benchmark in both periods, 

whereas the performance worsens in the second period for LIV.  

[Table 4.1approximately here] 

Another interesting result in Table 4.1 is the important increase in the standardized correlation 

between actual and implied underlying security prices after the tick reduction was implemented. 

This result can be observed irrespective of the inversion method under study, both when the 

implied prices are aggregated on a contract level basis as presented in Table 4.1, but also by 

underlying security in unreported results.
36

 This increase in correlation is clearly a result of the 

tightening of the bid-ask spreads for options following the tick size reduction as in Table 3.2, 

since tighter spreads allowed option market quotes to more closely mimic the dynamics of their 

corresponding underlying securities, thus leading to a greater correlation between the two 

markets.   

[Table 4.2 approximately here] 

 

Table 4.2 presents descriptive statistics for raw correlations aggregated at the security-day 

level.
37

  The results in this table confirm the findings in Table 4.1. Indeed, the correlation for 

LIV is, on average, approximately half that for HI and MLIV.  We again observe significant 

                                                             
34

For the correlation between the implied and underlying price and its benchmark (13), we applied the Fisher 

transformation, which assures approximate normality.   

35
To facilitate the interpretation of the results note that a median of, say, -1.70 means that for 50% of the option 

contracts the implied price yields a figure lower than its benchmark at the 5% or lower significance level.        
36

 All unreported results are available from the authors upon request. 
37

 Descriptive statistics for raw correlations at the contract level are not presented here since they are not 

qualitatively different from those in Table 4.2.   The raw correlations for the aggregate implied price were generally 

higher than the average correlation at the option-contract level. 
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increases in the average or median correlations after the policy change, that are also confirmed in 

the results for the raw correlations at the contract level.  This finding underscores the role of the 

tick size in the observable comovement of the two markets.    

[Table 4.3approximately here] 

The results presented in Table 4.3 show the standardized volatility of implied price relative to the 

benchmark (12).  To facilitate the interpretation of the results, note that ten standard errors 

correspond to approximately 4.8% of the benchmark volatility (12).
38

 Even if we take into 

account that this benchmark is weaker than the equivalent result (13) for the correlation 

coefficient, it is clear that the LIV method results in a noisy implied price compared to HI and 

MLIV.  More specifically, the results show that the LIV is more than double, on average, the 

corresponding benchmark quantity.  The equivalent unreported results for implied prices 

aggregated at the underlying security level also show that the LIV approach presents the highest 

volatility of implied price relative to the underlying price irrespective of the inversion approach. 

For the latter two methods, the volatility is tightly distributed around the benchmark (14) while 

for the former method it is clearly distributed above this benchmark indicating extraneous noise 

in the implied price. 

To sum up, the results in Tables 4.1 to 4.3 clearly indicate that the LIV inversion method 

underperforms when compared to the two methods proposed in this paper in terms of the basic 

time-series properties of the implied price.  Similar results for moving windows or lags up to 

thirty minutes were not qualitatively different and are not presented here.     

 

4.2 Option markets information shares 

In this section we present our main results for the IS and CS metrics, which assess the price 

discovery in the option market before and after the minimal tick policy change.  In addition to 

proposing an improved methodology for inverting the implied equity price from option markets, 

one of the main objectives of the study is to analyse the price discovery performance of option 

markets in comparison with their equity counterparts.  The paper thus studies the effect of the 

alternative inversion approaches on the importance of option markets in the price discovery 

process and challenges some of the traditional inferences that have been drawn using the typical 

LIV method.  Since we also observe rather substantial variability in these metrics over time in 

general, we contrast the results for our main sample with a comparison sample.  

Table 4.4 presents the summary results for the IS metric. It is clear that the average IS increased 

after the tick size reduction irrespectively of the inversion method for both main and comparison 

samples. While this reflects the state of the pair of financial markets between the two periods, the 

                                                             
38

 In other words, 210 standard errors correspond to twice the benchmark (14). 
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differential increase in the two samples between periods is much higher for the main than for the 

comparison sample; this difference is also statistically significant. More to the point, we note that 

all IS metrics are much higher for the HI and MLIV inversions compared to the LIV inversion, 

For the IS midpoint the LIV inversion yields about half the IS values before the policy change, 

and only about 36% of the IS values of the other two methods after the tick size reduction.  We 

attribute this difference to the noisiness of the LIV method documented above.  We conclude that 

the LIV method leads to an underestimation of the role of the option markets in price discovery.  

Finally, we observe highly consistent results between the HI and MLIV inversions. 

[Table 4.4 approximately here] 

Figure 2 plots the daily averages across underlying securities for the midpoint IS metric for the 

main and comparison samples under the HI inversion method.
39

  We observe a significant 

increase in IS for the main sample after the tick size reduction (day 0 in the figure) without a 

corresponding increase for the comparison sample.  This figure also underscores the importance 

of the comparison sample since we observe several large increases and decreases in IS over time.  

Note also an apparent isomorphism between the two plots before the policy change, which may 

imply market-wide factors driving the price discovery in the option markets. 

[Fig 2 approximately here] 

The results in Table 4.5 for the CS metric confirm the findings in Table 4.4. The results 

demonstrate the importance of adequately dealing with the methodological bias that is present in 

the traditional inversion approach and show that the proposed methods‟ improvements result in a 

much more important role of option markets in price discovery than would be traditionally 

expected.  In addition, the proportion of component shares CS that are statistically significant at 

a 5% level significantly increases after the tick size reduction. Above all, both IS and CS metrics 

for option markets have increased quite significantly after the reduction of the minimum tick size 

irrespective of the inversion method.  This effect appears even more clearly in the context of  the 

improved MLIV and HI approaches. 

[Table 4.5 approximately here] 

Table 4.6 presents the results for the minima and maxima of the IS metric aggregated for each 

underlying separately for the periods before and after the policy change for the HI and LIV 

inversion methods.
40

  The results in this table confirm previous findings both with respect to the 

effect of the policy change and to the impact of the inversion method on this metric. This table 

also shows that the option market information shares are much higher for the four exchange 

traded funds (ETF) in our sample than for equities, differing by as much as a factor of ten. 

[Table 4.6 approximately here] 

                                                             
39

The MLIV inversion yielded similar results. 
40

The results for the MLIV inversion method were not qualitatively different from those of the HI method. 
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As noted in the introduction, there are relatively few studies of the price discovery process in 

underlying and option market pairs. CGM (2004) studied this process for 60 optioned firms‟ 

equities over the five-year period 1988-1992. The average IS for the option market was about 

17% and there was comparatively little dispersion among firms. These results are far apart from 

ours for the equities, since the LIV inversion method in Table 4.6 yields IS measures before the 

tick size change that are about one tenth of the CGM numbers, and even the HI inversion 

method‟s numbers are also significantly lower than in CGM. After the tick size policy change the 

option market‟s IS metrics become generally higher for our firms than in CGM for HI but not 

necessarily for LIV. Note that our main sample has very little commonality with that of CGM, 

since not only is the time period different by more than fifteen years, but also only two firms, 

BMY and GM, are common to both samples. 

Our IS results in Table 4.6 for the options of the four ETFs are also lower than those of Chen and 

Gau (2009) for the options on the Taiwan index-tracking fund for the LIV inversion method, but 

the difference is not as large as in the comparison with CGM for equities. The HI inversion 

method makes the options‟ IS metric comparable or higher than that of Chen and Gau. Note that 

in this latter study the tick size decreased for the ETF but not for the option market, with the 

result that IS decreased for the latter market after the policy change.  

4.3 Robustness Checks     

Table 4.7 presents the results for 15- and 30-minute moving windows (or lags) for the estimation 

of the inversion parameters.  To shorten the presentation we present the IS metrics‟ results only 

for the midpoint.  The Table shows that our results are robust to the length of the window (or 

lag).   

[Table 4.7 approximately here] 

Several papers on market microstructure such as Hasbrouck (1995) or Chakravarty et al. (2004) 

use a polynomial distributed lag model (PDL) to estimate the VECM model.  The main role of 

PDL is to reduce the number of the estimated coefficients in case a large number of lags is 

applied since there is no good econometric justification for this approach other than the precision 

of the estimation.  We did not use PDL to derive our main results since we applied a relatively 

low number of lags indicated by the Schwartz information criterion.  As a robustness check we 

verify if the inclusion of a large number of lags may affect our results.  The outcome of this 

analysis is summarized in Table 4.8. This table shows that the IS and CS metrics are robust to the 

inclusion of a large number of lags for the HI and MLIV inversion methods.  For the LIV 

method, these metrics increase when the included number of lags increases in the period before 

the policy change.  For all inversion methods, the proportion of statistically significant CS 

decreases when the included number of lags increases.  We conclude that our results are robust 

to the inclusion of a large number of lags in the estimation of the VECM model. 

[Table 4.8 approximately here] 
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V. Conclusions 

We present an alternative approach to the price discovery process in option markets, in which we 

stress the importance of the option price inversion method in order to estimate the implied 

underlying price. We show theoretically that the price discovery metrics are highly sensitive to 

the errors introduced by the inversion method, and we develop theoretical benchmark measures 

in order to assess the inversion methods under plausible underlying asset dynamics. We also 

verify empirically with simulated data and a known option pricing model the adequacy of our 

proposed methods in dealing with the inversion errors. We also show that the dominant lagged 

implied volatility inversion method, which was used exclusively in earlier studies, tends to 

underestimate seriously the contributions of the option markets to price discovery. 

We apply these insights to estimate the price discovery effects of a change in minimum tick size 

in the option market implemented recently in a pilot study of 22 optioned stocks in the CBOE. 

We examine price discovery by using this pilot study sample and a matched sample of optioned 

stocks in which the minimum tick size was not changed. We show that tick size change had a 

major impact on the information shares of the option market, increasing the importance of this 

market in the discovery process. This increase was present for all option price inversion methods, 

but it was much more pronounced for the new inversion methods that we introduced. It was also 

much more pronounced for the options on exchange-traded funds than on individual stocks.  



 24 

Table 2.1:  Performance of the inversion methods for the implied price volatility in the Heston 

(1993) model  (Monte Carlo averages) 

T K/S0 
True 

(vol S) 

Benchmark 

(eq. 12) 
HI LIV MLIV RIV 

A: Contract level implied price volatility  

1/12 1.05 0.0112 0.0095 0.0117 0.0182 0.0105 0.0212 

1/12 1.00 0.0112 0.0103 0.0123 0.0185 0.0108 0.0186 

1/12 0.95 0.0112 0.0106 0.0122 0.0185 0.0108 0.0164 

2/12 1.05 0.0112 0.0096 0.0116 0.0181 0.0104 0.0168 

2/12 1.00 0.0112 0.0100 0.0126 0.0184 0.0107 0.0164 

2/12 0.95 0.0112 0.0104 0.0128 0.0185 0.0108 0.0168 

3/12 1.05 0.0112 0.0096 0.0129 0.0183 0.0107 0.0167 

3/12 1.00 0.0112 0.0099 0.0125 0.0183 0.0106 0.0161 

3/12 0.95 0.0112 0.0102 0.0125 0.0184 0.0107 0.0174 

A: Aggregate implied price volatility  

n/a n/a 0.0112 n/a 0.0094 0.0142 0.0084 0.0149 
Parameter values are: initial volatility equal to its long-term mean of 0.3, volatility of volatility 0.4, speed of mean 

reversion 1, correlation of Wiener processes -0.6, riskless rate 4%, stock drift 8%, price of volatility risk -5% and 

initial underlying price 100.  

Table 2.2:  Performance of the inversion methods for the correlation between option implied and 

underlying prices in the Heston (1993) model (Monte Carlo averages)  

T K/S0 
f-S 

w/o noise 

f-S 

with 

noise 

HI LIV MLIV RIV 

1/12 1.05 0.983 0.052 0.043 0.030 0.052 0.025 

1/12 1 0.993 0.046 0.041 0.027 0.046 0.027 

1/12 0.95 0.998 0.065 0.056 0.038 0.064 0.042 

2/12 1.05 0.976 0.063 0.052 0.036 0.063 0.039 

2/12 1 0.988 0.046 0.042 0.027 0.046 0.030 

2/12 0.95 0.995 0.061 0.055 0.035 0.060 0.039 

3/12 1.05 0.971 0.034 0.029 0.020 0.034 0.022 

3/12 1 0.985 0.047 0.043 0.027 0.046 0.031 

3/12 0.95 0.992 0.058 0.051 0.034 0.058 0.036 

A: Aggregate implied price 

n/a n/a n/a n/a 0.119 0.046 0.131 0.047 
Parameter values are: initial volatility equal to its long-term mean of 0.3, volatility of volatility 0.4, speed of mean 

reversion 1, correlation of Wiener processes -0.6, riskless rate 4%, stock drift 8%, price of volatility risk -5% and 

initial underlying price 100.  

 

 



 25 

Table 3.1: Underlying Securities in Main Sample 

The table provides the name and ticker symbol for the underlying securities included in the main 

sample and includes all securities that were part of the tick size reduction pilot project. 

Ticker Underlying Name 

AAPL Apple 

AMGN Amgen 

AMZN Amazon 

BMY Bristol-Myers Squibb 

C Citigroup 

COP ConocoPhillips 

CSCO Cisco 

FCX Freeport-McMoran 

GM General Motors 

MO Altria Group 

MOT Motorola 

NYX NYSE Euronext 

QCOM Qualcomm 

RIMM Research in Motion 

T AT&T 

YHOO Yahoo 

DIA* Diamonds Trust 

OIH* Oil Services HLDRS 

SPY* SPDR S&P 500 

XLE* Energy Sector SPDR 

* Exchange traded funds   
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Table 3.2 – Descriptive statistics before and after the tick size reduction 

 

The table provides descriptive statistics for the securities included in the main sample.  More 

specifically, the table provides means on a per security basis for Price, the national best offer and 

ask quoted prices, Implied Volatility, the Black-Scholes-Merton  volatility implied in option 

prices, volume, the total daily volume, Effective spreads, twice the absolute value of the 

difference between transaction prices and the average between quoted bid and ask prices, Quoted 

spreads, the difference between quoted bid and ask prices, Bid size and ask size,  the number of 

contracts available at the quoted bid and ask prices.  The means are provided for both the main 

sample, securities included in the pilot project, and the control sample, securities not included in 

the pilot project.  The t-statistics relate to the difference of means statistical test for the main 

sample. 

 

 
Before Policy Change  After Policy Change 

 Main Control t-stat Main Control t-stat 

 Price  3.86 4.43 -71.59*** 4.63 4.97 -38.92*** 

 Implied volatility (%) 32.55 32.37 12.32*** 42.52 45.80 -164.63*** 

 Volume (‘000s) 7.49 1.46 8.27*** 10.05 1.71 898.75*** 

Effective Spread 0.128 0.171 -1.53 0.056 0.205 -355.77*** 

Quoted Spread 0.119 0.138 -0.67 0.062 0.166 -37.54*** 

Bid size (‘000s) 1.87 0.45 652.02*** 0.45 0.50 -54.71*** 

Ask size (‘000s) 1.71 0.40 663.56*** 0.44 0.48 -34.71*** 

Number of observations 3,567,193 814,125   5,306,591 910,475   

***, ** & * : indicates a statistically significant difference of means before and after the 

minimum tick size change at a 1%, 5%, 10% level respectively.  
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 Table 4.1:  Relative standard errors of correlations between actual and implied underlying 

security prices before (pre) and after (post) the tick size reduction (aggregated by contract)  

The table provides descriptive statistics for relative standard errors of correlations between actual 

and implied underlying security prices before (pre) and after (post) the tick size reduction.  More 

specifically, the errors are described by providing their mean, median, sigma, the standard 

deviation, qrange, p1, the 1
st
 percentile, and p99, the 99

th
 percentile.  The information is 

aggregated on a per contract basis and is presented for various inversion methods. 

Inversion method mean median sigma qrange p1 p99 

Pre  

HI -0.103 -0.054 0.523 0.215 -0.886 0.393 

LIV -1.080 -0.942 1.162 1.411 -4.565 1.152 

MLIV -0.014 -0.011 0.095 0.084 -0.277 0.224 

Post  

HI -0.278 -0.205 0.486 0.378 -1.511 0.481 

lag LIV -5.577 -4.917 3.440 4.439 -15.749 -0.052 

MLIV -0.059 -0.051 0.233 0.142 -0.757 0.578 

 

Table 4.2: Correlations between actual and implied underlying security prices before and after 

the tick size reduction (aggregated by underlying security) 

The table provides descriptive statistics for correlations between actual and implied underlying 

security prices before (pre) and after (post) the tick size reduction.  More specifically, the 

correlations are described by providing their mean, median, sigma, the standard deviation, 

qrange, p1, the 1
st
 percentile, and p99, the 99

th
 percentile.  The information is aggregated on a 

per security basis and is presented for various inversion methods. 

Inversion method mean median sigma qrange p1 p99 

Pre  

HI 0.084 0.069 0.067 0.088 -0.010 0.285 

LIV 0.046 0.039 0.037 0.049 -0.010 0.161 

MLIV 0.086 0.071 0.068 0.090 -0.009 0.288 

Post  

HI 0.333 0.325 0.123 0.166 0.067 0.617 

LIV 0.171 0.161 0.079 0.100 0.015 0.375 

MLIV 0.336 0.328 0.123 0.166 0.069 0.620 
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Table 4.3: Standardized volatility of implied prices before and after the tick size reduction 

(aggregated by contract) 

The table provides descriptive statistics for standardized volatility of implied prices before (pre) 

and after (post) the tick size reduction.  More specifically, the standardized volatilities are 

described by providing their mean, median, sigma, the standard deviation, qrange, p1, the 1
st
 

percentile, and p99, the 99
th

 percentile.  The information is aggregated on a per contract basis 

and is presented for various inversion methods. 

Inversion  mean median sigma qrange p1 p99 

Pre  

HI 5.482 4.090 31.708 5.980 -8.955 27.951 

LIV 249.074 108.353 7390.187 39.249 19.585 294.072 

MLIV 9.332 2.761 447.559 22.818 -50.499 73.522 

Post  

HI 4.767 3.090 16.432 5.386 -8.070 29.154 

LIV 183.369 120.917 4837.497 48.070 33.814 317.749 

MLIV 0.561 2.078 19.382 25.298 -44.941 43.365 

 

Table 4.4: Average IS before and after the tick size reduction  

The table provides descriptive statistics for information shares, IS, before and after the policy 

change reducing the minimum tick size.  More specifically, the IS are described by providing 

their min, the minimum average value, mid, the median average value, max, the maximum 

average value.  The information is provided for both the main sample, securities included in the 

pilot project, and the control sample, securities not included in the pilot project. The statistics are 

also presented for various inversion methods. 

Inversion 

Method 

Main Sample Comparison Sample 

ISmin ISmid ISmax ISmin ISmid ISmax 

 A: Before Policy Change 

HI 0.043 0.062 0.081 0.014 0.025 0.036 

LIV 0.025 0.032 0.040 0.012 0.016 0.020 

MLIV 0.045 0.065 0.086 0.014 0.026 0.037 

 B: After Policy Change 

HI 0.169 0.321 0.473 0.038 0.078 0.119 

LIV 0.058 0.118 0.179 0.023 0.035 0.047 

MLIV 0.176 0.331 0.487 0.039 0.082 0.124 
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Table 4.5: Average CS before and after the tick size reduction  

The table provides descriptive statistics for component shares, CS, before and after the policy 

change reducing the minimum tick size.  More specifically, the CS are described by providing 

their CS, the average value, pr.p, the proportion of component shares that are statistically 

significant at a 5% level.  The information is provided for both the main sample, securities 

included in the pilot project, and the control sample, securities not included in the pilot project. 

The statistics are also presented for various inversion methods. 

 

Inversion 

Method 

Main Sample Control Sample 

CS pr.p CS pr.p 

 A: Before Policy Change 

HI 0.146 0.432 0.112 0.394 

LIV 0.072 0.372 0.055 0.304 

MLIV 0.151 0.437 0.113 0.397 

 B: After Policy Change 

HI 0.456 0.938 0.209 0.719 

LIV 0.164 0.795 0.085 0.478 

MLIV 0.469 0.943 0.217 0.734 
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Table 4.6: Average Information Shares per Underlying before and after Policy Change 

The table provides descriptive statistics for information shares, IS, before and after the policy 

change reducing the minimum tick size.  More specifically, the IS are described by providing 

their min, the minimum average value, max, the maximum average value.  The information is 

provided for each security included in the main sample, securities included in the pilot project, 

and is presented for various inversion methods. 

 

Ticker Before Policy Change After Policy Change 

 HI Inversion LIV Inversion HI Inversion LIV Inversion 

 Min max min max min max min max 

AAPL 0.005 0.042 0.005 0.017 0.184 0.683 0.059 0.321 

AMGN 0.005 0.020 0.006 0.012 0.064 0.329 0.021 0.090 

AMZN 0.003 0.022 0.003 0.010 0.165 0.549 0.056 0.242 

BMY 0.010 0.025 0.012 0.019 0.100 0.350 0.034 0.120 

C 0.008 0.026 0.009 0.016 0.095 0.309 0.030 0.100 

COP 0.012 0.055 0.010 0.026 0.116 0.452 0.027 0.121 

CSCO 0.008 0.018 0.007 0.012 0.126 0.468 0.045 0.196 

FCX 0.010 0.041 0.011 0.020 0.181 0.460 0.043 0.130 

GM 0.009 0.030 0.008 0.017 0.142 0.452 0.051 0.173 

MO 0.017 0.043 0.009 0.020 0.102 0.337 0.032 0.101 

MOT 0.010 0.025 0.009 0.016 0.135 0.408 0.052 0.161 

NYX 0.012 0.039 0.009 0.017 0.117 0.394 0.032 0.111 

QCOM 0.005 0.023 0.005 0.011 0.116 0.530 0.035 0.202 

RIMM 0.004 0.025 0.003 0.009 0.130 0.602 0.033 0.220 

T 0.011 0.031 0.007 0.016 0.138 0.483 0.043 0.182 

YHOO 0.004 0.010 0.004 0.008 0.078 0.331 0.032 0.131 

DIA* 0.127 0.206 0.074 0.108 0.258 0.458 0.095 0.174 

OIH* 0.302 0.466 0.139 0.218 0.525 0.777 0.213 0.368 

SPY* 0.072 0.157 0.035 0.068 0.210 0.503 0.077 0.213 

XLE* 0.228 0.319 0.127 0.168 0.404 0.589 0.149 0.219 

* exchange traded funds 
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Table 4.7: Results for Varying Moving Window or Lag  

The table provides average information shares, IS, and component shares, CS, both before (pre) 

and after (post) the policy change reducing the minimum tick size.  The information is presented 

for various moving windows (or lags) for the estimation of the inversion parameters. The table 

also provides the proportion of CS estimates that are statistically significant at a 5% level. The 

statistics are provided for the main sample, securities included in the pilot project and for various 

inversion methods. 

 

Inversion Method Main Results 10 minutes 30 minutes 

  pre post pre post pre post 

  Information Shares (midpoint) 

HI 0.062 0.321 0.068 0.326 0.069 0.327 

LIV 0.032 0.118 0.034 0.115 0.032 0.109 

MLIV 0.065 0.331 0.071 0.335 0.071 0.335 

  Component Shares 

HI 0.146 0.456 0.154 0.459 0.157 0.458 

LIV 0.072 0.164 0.073 0.160 0.070 0.150 

MLIV 0.151 0.469 0.159 0.472 0.159 0.471 

  Proportion p-value < 5% for Component Shares 

HI 0.432 0.938 0.397 0.924 0.356 0.894 

LIV 0.372 0.795 0.356 0.754 0.327 0.715 

MLIV 0.437 0.943 0.410 0.930 0.373 0.917 
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Table 4.8: Results for PDL Model  

The table provides average information shares, IS, and component shares, CS, both before (pre) 

and after (post) the policy change reducing the minimum tick size.  The information is presented 

for the polynomial distributed lag model (PDL) to estimate the VECM model. The table also 

provides the proportion of CS estimates that are statistically significant at a 5% level. The 

statistics are provided for the main sample, securities included in the pilot project and for various 

inversion methods. 

 

Inversion Main Results  PDL 150  PDL 300  

  pre post pre post pre post 

  Information Shares (midpoint) 

HI 0.062 0.321 0.056 0.303 0.062 0.305 

LIV 0.032 0.118 0.034 0.112 0.065  0.124  

MLIV 0.065 0.331 0.061 0.314 0.067 0.317 

  Component Shares 

HI 0.146 0.456 0.147 0.427 0.159 0.427 

LIV 0.072 0.164 0.078 0.154 0.110  0.170  

MLIV 0.151 0.469 0.153 0.441 0.166 0.443 

  Proportion p-value < 5% for Component Shares 

HI 0.432 0.938 0.238 0.738 0.222 0.663 

LIV 0.372 0.795 0.179 0.419 0.122  0.198  

MLIV 0.437 0.943 0.244 0.754 0.224 0.682 
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Figure 1.  Example of the Implied Prices 

The figure plots the implied prices for the LIV, HI and MLIV inversion methods as well as the 

prices of the underlying security and the call option.  The observed prices are for Apple stock 

and a February ATM call option (strike 135) observed on January 25, 2008.  Graphs have been 

shifted to facilitate presentation.    
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Figure 2: Time Series of Average Midpoint IS  
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Appendix 

Proof of Proposition 1 

Under the error independence assumption we write the structural model (2)-(3) under the form of 

a matrix equation 

, , 1 1 1

, , 1 , , 1 , , 1

, , 1 , ,

1  1 0 0 -1  0 

1  0 1 0  0  -1

1  0 0 0  0  0

t S t S t t t t t

t

t I t I t S t S t S t S t

t

t I t I t I t I t

v v v v v
P

v
v

v 1
 (A1) 

Define now 

, ,

1 1 1

, ,

0  0  1

,  where 1  0  -1

0  1  -1

S t S tSt St

I t It t I t It t

vt vtt t

e e

e e

e ev v

.  (A2) 

Then (A1) can be written under the following Vector Moving Average (VMA) lag polynomial 

representation, with I denoting the identity matrix 

1

-1 0  1

0 -1  1 ( ( ))

0  0   0

t

t t t

t

P
I I L

v
.          (A3) 

 

From (A1)-(A3) the covariance matrix  of the error vector t is equal to 

2 2 2 2

2 2 2 2

2 2 2

         

        +    

                    

S v v v

t v I v v

v v v

Var ,      (A4) 

 

From (A3) the identical rows  of the matrix  in (5) and (6) are equal to [0 0 1]. From (5) 

and (A4) we get 2' v
, the variance of the random walk.   

 

Since the variance
2ˆ of ˆ

It forms part of 2

I , its effect on the IS bounds for tI can be found by 

exploiting the symmetry of the vector P and the matrix with respect to the two components of 
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the vector ( tS , tI ). Recall that the IS upper (lower) bound of a price is derived when that price 

occupies the top (bottom) position in the VMA representation.
41

 Symmetry here implies that it 

suffices to find the impact of the variances 2

S
and 2

I
on IS from the Cholesky factorization of 

(A4), given that is not diagonal. Setting 'FF , where F is the lower triangular matrix, we 

note from the form of  that it suffices to consider the last row of F , denoted by 31 32 33   a a a .  

Hence, the effect of 
2ˆ on the upper bound of IS has the sign of 

2

31

2

S

a
; since 

2
2

31 2 2

 

 

v

S v

a this 

sign turns out to be negative, QED. The effect of 
2ˆ on the lower bound, on the other hand, has 

the sign of 
2

32

2

I

a
. The expression for 32a is complicated and is left as an exercise, but it turns out 

to be clearly a decreasing function of 2

I . This completes the proof for the case of the error 

independence assumption.  

A similar proof also holds for the Hasbrouk-Roll structural model (2)-(8), except for the fact that 

it involves heavier computations. (A1) now becomes 

1

1 , , 1

1

1

, , 1

( )

ˆ ˆ( )

1   0 0   0 

1   1 0    -1

ˆ ˆ1          0 0     0      0
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t

t I t I t I t I t

t
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S t S t

I t I t

I t I t
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c w c w

1

1
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ˆ ˆ

t t

t t

I t I t

u u

w w

   .   (A1‟) 

Similarly, (A2), (A3) and (A4) now become, with
2 2( ) ,  ( ) ,  ( , ) 0t u t w t tVar u Var w Cov u w   

1 1 1

( )
   0   

1 1
,  where      0      

ˆ ˆ
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S S
t St t St

t It t t It t

S S
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S II

S S

c
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u e u e

w e w e
c c

e e
c cc

c c

    (A2‟) 

 

                                                             
41

 See Hasbrouk (2002). 
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1

-1  0  1

0  -1  1 ( ( ))
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t

t t t

t
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I I L

E

     (A3‟) 

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

( )             ( )( )     ( )
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( )                ( )              

u S w u S I w u S w
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Var c c c c

c c
 (A4‟) 

From (A3‟) the rows of  are again [0 0 1], with 
2 2 2' u w , the random walk 

variance, as expected.   

The main difference between the two structural models is that the vector P and the matrix  are 

no longer symmetric with respect to the two components of the vector ( tS , tI ). As a result, the 

Cholesky factorization of (A4‟) as it now stands can only demonstrate the effect of
2ˆ  on the IS 

lower bound, and we need to interchange the rows of the matrix and repeat the estimation in 

order to find the effect on the IS upper bound. Both factorizations and demonstrations are 

straightforward but tedious and are left as an exercise.     

Proof of Lemma 1 

Recall that the goal is to derive the volatility ( )t tI  for the implied price implied by the observed 

option dynamics.  Let ( / )t df f denote the instantaneous volatility of the derivative return.  By 

deriving the quadratic variation / , / ,t tdf f df f  for the stochastic differential of the option price 

(13) and canceling the terms of order higher than dt we have: 

  

2 2
2 ( ) ( ) ( ) ( ) 2( / ) 2S S

t t t t t t t t t t t tdf f S f S f f f f ,                                 (A1) 

which is a quadratic equation in t .  The positive root of this equation yields the desired 

solution:  

2 2
( ) 2 2 2 ( )
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t t t t

f f df f f
f f

I
S f S f

f df f f f
sign f

S f S f

,                          (A2) 
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where in the first line we preserved the terms whose signs may change upon simplification.  

Since with our data we may only estimate (A2) under 0t , which corresponds to univariate 

diffusion, we gauge the impact of neglecting other terms by binding this impact from above.  It is 

clear from (A2) that stochastic volatility affects ( )t tI   the most at the extremes of the 

admissible values for . Assuming this quantity to be negative in line with leverage theory and 

with most empirical studies of stochastic volatility models, we note that an upper bound of the 

second term of (A2) can be found for 1.  Approximating the partials in this second term of 

(A2) by the Black-Scholes (1973) model quantities derived at the „appropriate‟ implied 

volatility, we get this term (≡ A) for call options as: 

1

1

td T
A

d
 ,                                                                                                        (A3) 

where d1 denotes the Black-Scholes quantity evaluated at the option implied volatility (IV).  

Since the ratio of the standard normal density function to the equivalent cumulative probability 

function is strictly positive and decreasing in its argument, it may be easily shown that A 

increases in the K/S ratio (for calls) and the time to maturity T while it decreases in IV.  By 

taking the maxima for K/S and T in our data , which respectively are 1.1 and 1/3, and the 

minimum for IV, which is approximately 0.2, we find the approximate extremal value for A 

equal to 0.7 t .  Note that the volatility of the volatility κ is clearly model-dependent. For 

instance Christoffersen at al. (2010) estimate this quantity in the range 0.5-12.5% for the S&P 

500 index at different specifications; yielding extremal values of A between 0.35 and 8.75%. 

These values overstate the impact of the second term of (A2), not only because 1  but also 

because our final sample of option contracts contains only the three contracts nearest to the 

money. For this reason we expect the coefficient of t to be significantly lower in magnitude for 

our data than its stated extremum of 0.7.  Hence we find it plausible that the stochastic volatility 

will have all but a limited impact on the estimate of the volatility of the implied price for our 

data.   

 

To evaluate (A2) with the use of observables without the stochastic volatility terms, we note that, 

since we don‟t observe instantaneous quantities, we replace the remaining terms of (A2) by the 

median quantities for each daily contract-sample.  Since the estimate for the partial ( )S

tf from the 

first differences of the option and underlying would be extremely noisy because of the bid-ask 

spreads, we use the homogeneity assumption and replace this quantity by ( )X

t t tf f X S , with 

( )X

tf estimated by (14), which factors out the underlying price.  Now we are ready to state our 

approximation for the volatility of underlying price implied by the observed option dynamics: 

 

ˆ ˆ /I df f  ,                                                                                                        (A4) 
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where for a given contract-day,  represents the daily median of ( )| |Xf f f X , with ( )Xf  

estimated as before and we use the square root of the realized variance
42

 as the estimate for the 

option return volatility.  Since (A3) is an approximation, we cannot test formally for the 

differences between this benchmark and the observed volatility of the implied price derived by 

the inversion methods applied in this study; however, we infer that a „good‟ inversion method 

will result in a tight spread around this benchmark quantity. 

Proof of Lemma 2 

We demonstrate that a powerful benchmark exists for the correlation of the implied price and 

underlying price, IS , that is 
IS fS

.  In other words, we may use the absolute observed 

correlation between the option and underlying returns ˆ
fS

in statistical tests for the null 

hypothesis ˆ ˆ 0IS fS
.  Under a univariate diffusion (including state-dependent  volatility), we 

clearly have 1IS fS
, which in this case clearly implies that any empirically observed 

correlation between option and the underlying should hold in its absolute value for the 

correlation between the implied and underlying price.  In the presence of stochastic volatility, by 

taking the appropriate quadratic and cross variations of the state dynamics (9) and the stochastic 

differential of the option price (10) and by simplifying we have: 

2 2

,

, , , 2
fS

df dS a b a b

df df dS dS df df a ab b
 ,                                        (A5)       

where ( )S

t t ta S f and ( )

t tb f .
43

  It immediately follows that 1fS
 since the denominator 

exceeds 2( )a b .   

We now prove Lemma 2 by contradiction. Assume
IS fS

. By inverting the stochastic 

differential of the option price (10) for the implied price I , we have 

( )

( ) ( )

1
 other termst

t tS S

t t

f
dI df d

f f
,                                                                         (A6) 

where „other terms‟ clearly don‟t contain either Brownian motion.  By taking the appropriate 

quadratic and cross variation it follows that 

                                                             
42

 To estimate the realized variance, the relevant literature recommends using longer time intervals than the one-

second frequency because of the microstructure noise present in high-frequency data (see Andersen at al. (2002) for 

a survey).  In our estimate we use this one-second frequency since the microstructure noise clearly plays a role in 

our estimates for the implied price.   
43

 Formally, we deal with correlations of return.  However, dividing the stochastic differentials in quadratic and 

cross variations by the appropriate quantities to derive correlation has no effect since those quantities immediately 

factor out.    
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( )

2

,,

, , ,

fSS

IS t

b df dfdI dS
sign f

dI dI dS dS a df df
 ,                                       (A7) 

where a and b are as in (A5), in the second equality we separated the terms in the quadratic and 

cross variations, divided the numerator and denominator by ,df df  to separate 
fS

and 

simplified.  .  Hence, for a call option the relation (A7) implies by assumption  

, ( ) , ,
1

, ,

fS

fS

b df df a b df df b df df

a df df a df df
,                           (A8) 

where we used ( ) 0S

tf  for calls and substituted (A5) in the RHS. Since this last equality 

contradicts 1fS
, it follows that 

IS fS
, QED.  The proof for put options follows by 

extension, QED  
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