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Abstract 
 

This paper examines the stochastic dominance efficiency in the presence 

of transaction costs for S&P 500 index futures call and put options by 

estimating the Constantinides-Perrakis (2006) bounds on reservation 

write and reservation purchase prices and then verifying whether the 

observed option prices satisfy them. The bounds are estimated from data 

on past realizations of the underlying asset and under various data-based 

assumptions about the investor-assumed distribution of that asset. The 

bounds are then compared to observed market prices and several 

violations are identified under all distributional assumptions, although 

these violations are relatively few under forward-looking distributions. 

The paper then derives trading strategies that exploit these violations and 

increase expected utility for any risk averse investor. It develops a metric 

that evaluates the increase in expected utility for any given investor 

within a certain utility class and links it with the traditional second degree 

stochastic dominance criterion. Last, it demonstrates by out-of-sample 

tests with realized underlying asset prices that these strategies to exploit 

the mispricing of index futures options do indeed improve risk-adjusted 

returns for risk averse investors.   
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I. Introduction 

 

This paper is an examination of the opportunities to realize superior risk adjusted 

expected returns by trading in the S&P 500 index and in the index futures option markets 

in the presence of transaction costs. Such superior returns appear because of the adoption 

of stochastically dominating strategies that are feasible whenever observed option prices 

violate appropriately defined upper or lower bounds. The strategies are stochastically 

dominating in the conventional second-degree sense, implying that they increase the 

expected utility of investors possessing any type of increasing and concave utility 

function. A novel feature of our approach is the fact that the dominating strategies are 

dynamic and incorporate proportional transaction costs in restructuring portfolios.  

 

In our study we identify mispriced options for given estimated probability distributions of 

the underlying index return. These options provide opportunities to adopt stochastically 

dominating trading strategies that are independent of investor utility. We then test the 

improvement in expected utility using specific utility functions of the constant 

proportional risk aversion (CPRA) type. We develop a metric to measure the utility 

improvement for a particular type of investors and link it to the conventional second-

degree stochastic dominance criterion. The metric involves an integral condition on the 

two distributions of terminal portfolio return with and without the trading strategy for the 

mispriced option. This metric corresponds to the expected excess rate of return to option 

expiration attained as a result of the trading strategy. We find that the improvements in 

this expected return, which is utility-specific but risk-adjusted in the conventional 

Rothchild-Stiglitz (1970) sense, are substantial. These improvements are also verified for 

the mispriced options in out-of-sample tests involving the bootstrapped distributions 

derived from observed index returns till option expiration. 

   

The option bounds used to identify the appropriate stochastically dominating strategies 

were initially derived for European options in Constantinides and Perrakis (CP, 2002). 

They were subsequently extended to American index options and American futures 

options (CP, 2006). These bounds use the entire distribution of the underlying asset as 

input, but are otherwise free from any assumptions about type of distribution or investor 

utility. The multiperiod optimization model relies on results initially derived by 

Constantinides (1979, 1986). To our knowledge this is the first empirical study applying 

option pricing models to observed option prices in the presence of transactions costs.   

 

Stochastic dominance rules for the pairwise comparison of asset returns were initially 

developed by Hadar and Russell (1969) and Hanoch and Levy (1969), and subsequently 

extended by several other writers
1
. Although these rules present considerable theoretical 

interest, they have had relatively limited applications for two main reasons. First, the 

rules provide little guidance for portfolio selection, namely the creation of efficient 

portfolios from a set of assets. Second, they are rather difficult to extend to multiperiod 

problems.  

 

                                                 
1
 See the survey paper by Levy (1992). 
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Stochastic dominance was first applied to option pricing by Levy (1985) in a single 

period model that derived option bounds relying on the entire distribution of stock 

returns. One of these bounds had first been derived by arbitrage methods by Perrakis and 

Ryan (1984), while Ritchken (1985) derived essentially the same bounds as Levy by 

relying on capital market equilibrium arguments. Both the arbitrage and the capital 

equilibrium (but not the stochastic dominance) methods were extended into a multiperiod 

context by Perrakis (1986, 1988) and Ritchken and Kuo (1988).  

 

The CP studies were a major extension of these results, insofar as they derived results 

similar to those of the earlier studies by using arbitrage methods augmented by the 

presence of transaction costs and a recursive expected utility maximization. The 

derivations relied heavily on regularity conditions about multiperiod utility maximization 

in the presence of transaction costs originally derived by Constantinides (1979). While 

some of the CP (2002) results were dependent on the partition of the interval to option 

expiration into discrete trading subperiods, some of those results derived bounds that 

were independent of such partition. It is these latter results that were extended to 

American options in CP (2006). Our study focuses exclusively on two of those results
2
, 

one of which involves upper bounds on American call futures options and the other lower 

bounds on American put futures options.  

 

Most option pricing models derive their results by absence of arbitrage arguments; hence, 

the presence of transaction costs is a major constraint on their applicability. Indeed, it is 

well known since Merton (1989) that even a “small” but finite rate of proportional 

transaction costs on the underlying asset in any restructuring of the option replicating 

portfolio invalidates completely the Black-Scholes (1973) option price even when stock 

returns are lognormal. Similar results also hold for the discrete time binomial model, in 

which the derived long option price increases with the size of the binomial tree. Attempts 

to bypass this difficulty have not, in general been successful
3
, and most arbitrage-based 

models do not survive the introduction of transaction costs. Consequently, transaction 

costs have generally been ignored in empirical work on option prices.  

 

Transaction costs have also been introduced into option pricing through expected utility 

maximization models, in the form of investor portfolios containing the underlying asset, 

the riskless asset, and the option. The investor is constrained into holding the option till 

expiration. The optimal portfolio is derived through multiperiod recursive dynamic 

optimization, in which there are transaction costs in restructuring the portfolio. The 

reservation write (purchase) price is defined as the minimum (maximum) write 

(purchase) price for the option that makes the investor indifferent between including and 

not including the option into her portfolio
4
. This approach in general produces option 

                                                 
2
 Since the options are American, the bounds clearly depend on the number of allowable exercise dates 

prior to option expiration; they converge to a limit even if the options can be exercised at any time.  
3
 See, for instance, Leland (1985) and Soner, Shreve and Cvitanic (1995) for the continuous time model, 

and Boyle and Vorst (1992), Bensaid et al (1992), and Perrakis and Lefoll (1997) for the binomial model. 
4
Davis et al (1993) were the first to attempt option pricing under the expected utility method.  See also 

Zariphopoulou (1999) for a useful non-technical summary of this approach. 
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prices that depend on investor characteristics such as wealth and utility function 

parameters. For these reasons it has not been very popular.  

 

A variant of the expected utility approach derives the reservation write and reservation 

purchase option prices by finding the minimum or maximum option prices that are 

independent of investor wealth and make the investor at least as well off as he would 

have been in the absence of the option. The optimization is taken with respect to a given 

class of utility functions, which are generally chosen within the CPRA class. 

Constantinides and Zariphopoulou (1999, 2001) have derived option bounds based on 

this approach. They are generally looser than the ones in CP (2002), even though they are 

in principle applicable to a larger set of derivatives. 

 

The CP (2002, 2006) stochastic dominance results are methodologically somewhere in-

between the arbitrage and expected utility methods. While they rely on the existence of a 

value function identified with the maximized utility of an investor, they are independent 

of the functional form of this utility, as in arbitrage. They assume the existence of at least 

one investor holding only the underlying asset and the riskless asset and (possibly) the 

option. While this assumption may be restrictive for options on individual stocks, its 

validity in the case of index options cannot be doubted, given that fact that numerous 

surveys have shown that a large number of US investors follow indexing strategies in 

their investments.
5
 The derived bounds need the entire distribution of underlying asset 

returns, which can be anything. In our empirical work we use estimated distributions 

from past data. Several alternative derivations of the bounds are presented, based either 

on historical samples of observed values, or on forward-looking samples; in the latter the 

sample on which the distribution is based is time wise coincident with the sample of 

observed option prices. In all cases the form of the distribution is left unspecified.   

 

A violation of the bounds triggers a trading strategy that improves investor expected 

utility net of transaction costs. Although such improvements were shown theoretically to 

exist under all forms of utility functions and asset returns, they can only be measured for 

special types of utility functions and underlying asset returns. For this reason we consider 

investors holding a portfolio of the riskless asset and a stock index whose returns are 

assumed by the investors as being lognormally distributed with a mean and variance 

equal to those of the sample used in deriving the bounds. The investor utility is of the 

constant proportional risk aversion (CPRA) type, and the investor is assumed to 

maximize the utility of the discounted consumption flow over a finite or infinite horizon. 

To our knowledge, this is the only portfolio selection model based on expected utility and 

incorporating transaction costs for which closed-form solutions exist in the literature. The 

infinite horizon case has been studied by Constantinides (1986), who assumed a simple 

consumption policy, by Davis and Norman (1990) who relaxed that assumption but found 

relatively little effect on the attained levels of expected utility, and by Dumas and 

Luciano (1991), who also studied basically the same model, but with a different objective 

function, which maximized the expected utility of final wealth. This latter study assumed 

an infinite horizon and relied on an endogenous discount factor to obtain convergence 

                                                 
5
 Bogle (2005) reports that in 2004 index funds accounted for about one third of equity fund cash inflows 

since 2000 and represented about one seventh of equity fund assets. 
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results. The finite horizon case has also been studied by several authors, including 

Genotte and Jung (1994), Balduzzi and Lynch (1999) and Liu and Lowenstein (2002). 

These studies also used as objective functions the maximization of the expected utility of 

terminal wealth, of the discounted consumption flow, or of a combination of these two 

objectives. All these finite horizon models show that for realistically long investor 

horizons of ten years or more the optimal investment policy is indistinguishable from that 

of the corresponding infinite horizon case. For this reason we adopt in our own work the 

Constantinides (1986) formulation, which is both computationally simpler and imposes 

more stringent requirements on our utility improvements.
6
 

 

The stochastic dominance approach to option pricing in the presence of transaction costs 

has also been examined empirically in Constantinides, Jackwerth and Perrakis (CJP, 

2006). Although the theoretical foundations of CJP are similar to the ones underlying this 

paper, insofar as they both examine the stochastic dominance efficiency of the options 

market, both the object of study and the methodological approaches of the two papers are 

very different from each other. CJP examine European options on the S&P 500 index, 

while our study concerns American index futures options; it must, therefore, deal with the 

troublesome issues of early exercise and the cost-of-carry relationship. Further, we 

examine the mispricing of individual options with respect to the underlying asset in a 

multiperiod trading model, while CJP consider the consistency of observed option prices 

not only with the underlying asset but also with each other; these particular results allow 

only a limited number of trading periods to option expiration. Last but not least, we focus 

here on trading strategies designed to exploit the identified mispriced options and on the 

profits derived from such strategies, a topic that has not been covered in CJP.     

 

In the next section we present the theoretical results used in our empirical work. A 

summary of their formulation, including some minor clarifications of the existing theory, 

is relegated to the appendix. Section III presents the empirical results of the estimation of 

the bounds under various assumptions about the underlying asset distribution and 

identifies the observations violating these bounds using trading data on the S&P 500 

index futures options. Section IV presents a summary of the adapted Constantinides 

(1986) model used in the investor trading strategies to exploit mispriced options 

including some necessary minor extensions, and section V develops the stochastic 

dominance-based metric to measure the utility improvements arising from such 

strategies. Section VI presents the empirical results of the adoption of stochastically 

dominant strategies in observed violations of the option bounds in our sample. Section 

VII concludes.  

 

 

II. Bounds on Futures Options 

 

                                                 
6
 All the portfolio selection models with transaction costs contain a no trade (NT) region, which is narrower 

in the models that use the utility of the flow of consumption than in those that use the utility of terminal 

wealth. As discussed in section V, a narrower NT region works against the utility improvements from the 

strategies that exploit violations of mispriced options.  
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In this section we present the theory underlying our empirical work, by defining the 

option bounds as they appear in CP (2006). We consider an economy in which there is at 

least one investor who, before the option is introduced, holds portfolios of long or short 

positions in a stock with price 
t

S (with a natural interpretation of an index) and/or in a 

zero-coupon risk-free bond with return R, equal to one plus the riskless rate of interest per 

period. At t the investor enters with 
t

x dollars in the bond account and with /
t t

y S  ex 

dividend shares of stock.  The bond trades do not incur transaction costs, but any trades of 

the risky asset decrease the bond account by a proportional transaction cost k1(k2) for 

buying (selling) the asset. The investor makes sequential investment decisions at discrete 

trading dates t ( 0,  1... , 't T= ), where the terminal date T’ may be finite or infinite. At 

date t, the stock pays cash dividends
t t
Sγ  , where the dividend yield parameters γt are 

assumed to be deterministic and known to the investor at time zero.  We assume that the 

support of 
t

S  is (0, )∞ , that 
t

S  follows a general distribution, and that the successive 

rates of return on the stock are independently distributed with conditional mean return 

known to the investor at time zero: 









+≡ +

+ t

t

t
t

S

t S
S

S
ER |)1( 1

1γ .     (2.1) 

   

We define the conditional mean return with the dividend reinvested in stock, net of 

transaction costs: 

 


















+
+≡ ++

t

t

ttS

t S
S

S

k
ER |

1
1ˆ 1

1

1γ
 .      (2.2) 

The distinction between ˆ S

t
R  and S

t
R  is negligible provided the dividend yield and the 

transaction cost rate are of order of a few percent.  

 

The investors’ objective is to maximize the utility ' '[ ( )]
T T

E u W , where WT' denotes the 

investor's net worth at T',
7
 an objective that realistically represents the goals of a financial 

institution. The utility function (.)tu  is assumed to be concave and increasing and is 

defined for both positive and negative terminal worth, but is otherwise left unspecified.  

In revising optimally her portfolio the investor increases (decreases) the stock dollar 

holdings from yt to 
t t

y v+ by decreasing (increasing) the bond account from xt to 

1 2max[ , ]
t t t t

x v k v k v− − − . We denote by ( ,  ,  ) 
t t

V x y t the indirect (recursively maximized) 

utility function or value function at t of the investor who does not have an option 

position, given analytically in CP (2006), equations (5) and (6). The investment decision 

                                                 
7
 Alternatively, the objective may be the maximization of the discounted sum of the utilities of 

consumption )( tt cu at each trading date, plus possibly the utility of terminal worth. Although the CP 

(2005) bounds were derived under the terminal wealth objective, they remain valid without any 

reformulation under the other alternative objectives.   
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variable 
t

v  is constrained to be measurable with respect to the information set available at 

t. 
t

v  is chosen by maximizing recursively 1 1[ ( ,  ,  1) ]  t t tE V x y t S+ + + , where 

 the bond account dynamics are, in the general case: 

 

1 1
1 1 2{ max[ , ]} ( ) ,   1t t

t t t t t t t

t

S
x x v k v k v R y v t T'

S

γ + +
+ = − − − + + ≤ − ,  (2.3) 

 

and the stock account dynamics are:  

 

ttttt SSvyy /)( 11 ++ +=  .      (2.4)   

  

If *

t
υ  denotes the optimal choice of 

t
v  then we also set 

 
* * *

1 2' max ,
t t t t t

x x k kυ υ υ = − − −  ,  *'
t t t

y y υ= +    (2.5) 

 

At the terminal date, the stock account is liquidated.  The net worth is defined as: 

 

],max[ '2'1''' TTTTT ykykyxW −−+= .  

 

In this market we now introduce a cash-settled futures contract
8
 with maturity , 'T T T≤ .  

Since in the presence of transaction costs the cost-of-carry relation cannot be assumed to 

hold exactly, we assume that the futures price 
t

F  is linked to the stock price as 

 

    ,
t t t t

F S t Tα ε= + ≤      (2.6) 

 

where 
t

α  is a time-dependent parameter and the random variables { }tε  are distributed 

independently of each other and of the stock price series { }tS . We assume that the 

random variables { }tε  are bounded from above by some given parameterε . In a 

frictionless market, a standard static no-arbitrage argument yields the cost-of-carry 

relation 

 

   ( ) 1

1

1 , 0
T

T t

t s t

s t

Rα γ ε
−−

= +

= + ≡∏ .    (2.7)  

  

 

Next, an American, cash-settled futures call option with strike K and expiration date T , 

the same or earlier than the delivery date of the futures, is added to the investment 

                                                 
8
 Note that in the CP (2005) model the investor is not allowed to hold the futures contract, which is 

understood simply to be an index on which options can be issued.  
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opportunity set.  We consider the following sequence of events.  An investor enters date t 

with endowments 
t

x and 
t

y in the bond and ex dividend stock accounts, respectively, and 

a short position in a futures call option.  The endowments are stated net of any cash flows 

that the trader has incurred at date t or at an earlier date in writing the call, and net of the 

dividend payable on the stock at time t.  First, the investor is informed whether she has 

been “assigned” or not.  If the investor has been “assigned”, then she pays tF K−  in cash 

and has her position in the call closed out.  If the investor has been “assigned”, the value 

of the cash account becomes ( )t tx F K− − .  

 

In such an economy it was shown in CP (2006) that there exists an upper bound on the 

reservation write price of a European call futures option given by 

 

( ) ( )1

2

1
, , max , ,

1
t t t t

k
C F S t N S t F K

k

+
 = − −

, t T≤ ,   (2.8) 

 

where the function N(St, t) is defined as follows 

 

1

1 1 1( , ) ( ) [max{ , ( , 1)} ]t t t t tN S t R E S K N S t S Sα ε
−

−
+ + += + − + =   (2.9) 

 

for 1t T≤ − , and ( ), 0N S T = . 

 

Similarly, a tight lower bound on the reservation purchase price of an American futures 

put option was also derived in CP (2006). The cash payoff of the put exercised at time t is 

( )t t t tK F K Sα ε− = − + , t T≤ , with FT = ST whenever the futures and the option expire 

at the same date. Here a trader enters date t with endowments 
t

x  and 
t

y in the bond and 

stock accounts, respectively, and a long position in a put futures option.  The 

endowments 
t

x  and 
t

y are net of any cash flows that the trader has incurred at date t or at 

an earlier date in buying the put.  We stipulate that, at each date, the trader may either 

hold on to the put position or exercise it, but is constrained from selling it.  It may well be 

optimal for the trader, at certain times, to sell the put rather than hold on to it or exercise 

it.
9
  If the trader exercises the put, she receives ( )t t tK Sα ε− +  in cash from a trader with 

a short position in the put that is “assigned”.  

 

Here the lower bound on the reservation purchase price of the American futures put 

option was shown to be equal to 
 

                                                 
9
 The reservation purchase price of a put is derived under this constrained policy. Likewise, the reservation 

write price of the call option in (2.8)-(2.9) is derived under the constraint that the short position may be 

assigned by an option holder, but may not be closed by the short investor prior to expiration. Note, 

however, that if a trader increases expected utility by opening an option position at a given price and is 

constrained not to close out the position prior to expiration, then the trader increases expected utility even 

further when the constraint is removed. Thus, the relations (2.8)-(2.10) are also reservation prices for 

unconstrained investors.  
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2

1

1-
( , , )  max - ,  ( ,  ) ,

1
t t t t

k
P F S t K F M S t t T

k

 
≡ ≤ + 

,  (2.10)  

 

where the function M(St, t) is given by 

 

 ( ) ( ) ( )1

1 1 1, max ( ), , 1 |t t t t tM S t R E K S M S t S Sα ε
−−

+ + +

  = − + + =    
,   (2.11)  

 

for 1t T≤ − , and ( ), 0M S T = . 

 

 

A final caveat in the derivation of the bounds concerns the satisfaction of the assumed 

monotonicity condition, which was a necessary condition for the derivation of the CP 

(2006) bounds. This monotonicity condition is satisfied if the following sufficient 

conditions (2.12a) and (2.12b) hold for (2.8)-(2.9) and (2.10)-(2.11) respectively 

 

1 1 2 1 2[ ' (1 ) ( , 1) /(1 )] / ( / ) /(1 ) 0T t

t t t s
y N S t k S R R kγ −

− − −+ + − − − − > ,   (2.12a) 

 

1 1 1 1 1[ ' ( , 1) /(1 )] / ( / ) /(1 ) 0T t

t t t s
y M S t k S R R k

−
− − −− − + − + >   (2.12b) 

 

From (2.5) it is clear that the satisfaction of (2.12ab) for any t < T depends on the ratio 

1
1

1

'
t

t

t

y
N

S

−
−

−

= , where 
t

N  denotes the number of shares optimally held at t. While this 

number clearly increases as a function of the investor’s initial stock position, (2.5) 

implies that this ratio depends also on the investor utility function via the term *

t
υ . A 

closed-form expression for the minimum stockholdings such that (2.12ab) are satisfied 

with probability 1 over the time to option expiration does not exist, but it is possible to 

establish such minimum stockholdings via numerical simulations for the parameter 

values mirrored in our data and for the value function ( ,  ,  ) 
t t

V x y t and asset dynamics 

described in section IV. It can be shown
10

 that a ratio of 1.5 shares per option position 

guarantees the satisfaction of (2.12ab) for all parameter values in our data. 

 

 In the next section we test relations (2.8)-(2.11) with data on S&P 500 index futures 

options. 

 

 

 

 III. Empirical Results 

 

                                                 
10

 Details of the numerical demonstration are available from the authors on request. See also similar results 

in CP (2006).  
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In this section we estimate the bounds (2.8)-(2.9) and (2.10)-(2.11) and compare them 

respectively to observed call futures bid and put futures ask prices. As shown in CP 

(2006), if the observed call bid price (put ask price) exceeds the upper bound (2.8)-(2.9) 

(lower bound (2.10)-(2.11)) then there exists a utility-improving strategy for any risk 

averse investor holding the S&P 500 index and the riskless bond. These strategies are 

explored in the next section for particular types of investors. The key issue in the 

empirical work is the assumed information set available to the investor in the estimation 

of the bounds (2.8)-(2.11). 

 

In our empirical work we use American exercise-style S&P 500 futures call and put 

options maturing in 30 days, and contemporaneous intraday S&P 500 futures quotes for 

the underlying for the years 1990-2002 to search for violations of the bounds (2.8)-(2.9) 

and (2.10)-(2.11); a full description of our data base is in appendix A. In estimating the 

bounds we do not assume any particular type of distribution for the underlying asset, the 

S&P 500 returns. Instead, we assume that the investor’s information set is drawn from 

empirical distributions of the observed S&P 500 daily returns. We use three alternative 

information sets for these distributions: (i) a set of historical daily returns on S&P 500 

since 1928, (ii) a forward-looking sample of 1990-2002 daily index returns, and (iii) a set 

of daily returns which occurred in the course of 30 calendar days until the maturity of 

each option in our sample.
11

 In any one of these three cases we explicitly model the first 

moment of the index distribution following the arguments in Merton (1980). In particular, 

we use a 4% cum dividend risk premium
12

 above the 3-month T-bill rate observed at the 

option sampling date, where the assumed deterministic dividend yield is derived from 

daily cash dividends observed until the underlying futures contract maturity
13

.  Daily 

dividend distributions on the S&P were obtained from Standard & Poors and T-bill data 

was obtained from Federal Reserve Bank of St. Louis Economic Research Database 

(FRED
®
).  

 

A key issue in the bounds estimation is the ability of the investor to detect shifts in the 

underlying asset distribution. There is clear evidence from Table 1 that the distribution 

shifted some time in the later years of our options sample, with Sample 1 covering the 

years 1990-1996 and Sample 2 the years 1997-2002. A similar shift is seen in the 

volatility implied by the futures options according to the Black-Scholes model. This is 

seen in Figure 1, which presents kernel regressions of the volatility implied
14

 by the bid 

prices for calls and the ask prices for puts under a Black-Scholes set of assumptions as a 

function of the degree of moneyness of the options for Sample 1 and Sample 2. Although 

the implied volatility is a meaningless metric outside the Black-Scholes assumptions, it is 

                                                 
11

 The time periods of the historical and forward-looking samples are broadly similar to the ones used by 

CJP. Our samples, however, are used to derive the distributions of the daily index returns, while CJP, who 

study European options, need only the distribution of the entire return to option expiration.  
12

 We also used an 8% risk premium.  
13

 Considering a dividend yield on the index ignores the lumpiness of the dividend process.  The relaxation 

of this assumption, however, did not bring significant changes to our results.   
14

 To derive the implied volatility throughout this paper we use Kamrad and Ritchken (1991) trinomial 

model under the perfect cost-of-carry relationship.  A trinomial lattice clearly outperforms the binomial 

with respect to the oscillating behavior around the convergence price, which results in far better implied 

volatility estimates for the former model.  
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also a widely used statistic that investors may use to detect shifts in the distribution of the 

underlying asset returns. For this reason we maintained this division of the entire sample 

of options into two in all the empirical tests that were done.
15

 

 

 

(Table 1 and Figure 1 about here) 
 

 

For each one of the two option samples we estimate the bounds (2.8)-(2.11) under three 

alternative estimates of the underlying return distribution constructed from histograms of 

the following sets of observed S&P 500 daily returns. The historical set included all daily 

returns since 1928 until the beginning date of each sample. The forward-looking set 

contained all daily returns on the index for the respective subperiod. Last, the realized set 

was composed of the daily returns that actually occurred in the course of the 30 calendar 

days until the maturity of each option in our sample. Option bounds constructed from 

distributions drawn from this last set clearly correspond to the “best possible 

information” about the underlying return distribution. The characteristics of the three data 

sets are shown in Tables 1 and 2. 

 

 

(Table 2 about here) 
 

 

Appendix A describes in detail the estimation of the various variables that enter into the 

bounds relations (2.8)-(2.11). We assume one-way transaction cost rates of trading in the 

index k1 = k2 = 0.5%, rates that are considered representative of the costs faced by 

individual traders.
16

  The derivation of the bounds requires recursive estimation of 

conditional expectations in (2.9) and (2.11), which is straightforward under the 

assumption of lognormality of returns, since these expressions can be derived through an 

adapted binomial or trinomial model.  These methods are, however, clearly unsuitable 

here since we use (discrete) empirical distributions based on the observed daily returns on 

the S&P 500 index in order to estimate the bounds. Such empirical distributions must 

contain a large number of states in order to be realistic. To deal with this problem we 

develop a multinomial lattice model that aggregates similar states at each time step, 

which represents one trading day; a summary of this lattice model is presented in 

Appendix B. While this lattice model is sufficient for the quarterly options in our sample, 

for which exercise takes place only at the end of the day, it does not account for the 

higher than daily exercise frequency of serial options. To account for possibly higher 

bounds because of more frequent exercise opportunities we use a trinomial model for 

intraday trading with Black-Scholes assumptions regarding the return process using the 

                                                 
15

 Note that the sample split is rather rough; for instance, for 1990 and 1991, we observed distinctively 

higher implied volatility than in the remaining years for Sample 1.  However, since by the forward-looking 

distributions we proxy for an information set available to the investor, we avoid a finer sample split to keep 

the information set noisy in the context of a 30-day trading horizon. 

 
16

 See the comments in Balduzzi and Lynch (1999, p. 63).  
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volatility of a given set of daily index returns while holding the remaining assumptions 

unchanged. We compute the bound value for an option exercisable (i) once a trading day; 

(ii) several (eight) times a day.  The difference between (ii) and (i) will serve as a proxy 

for the premium for continuous exercise opportunities, and it will augment the bound 

value for serial options.  Our results indicate, however, that this premium is negligible for 

calls and quite low for puts, i.e. it remains within 2% of the total value of the put lower 

bound. 

 

Table 3 presents the summary results for the bounds’ violations according to the three 

types of empirical distribution of the S&P 500 index described in the previous section.  In 

addition, we include similar results for bounds estimated under the assumption of 

lognormal distributions for the index, with volatility equal to that of the corresponding 

empirical distribution. Figure 2 similarly presents the results for the bounds estimations 

and the observed option prices in terms of their implied volatilities, the latter viewed 

simply as a translation device.  To aggregate the data, we apply kernel regression to the 

bounds’ implied volatilities
17

 as functions of the option moneyness. To derive the kernel 

bandwidth, we experimented around the Silverman (1986) rule of thumb, which is 

0.79QN 
– 1/5

, where Q is the inter-quartile range and used this quantity increased by a 

factor of two. 

 

(Table 3 and Figure 2 about here) 
 

The results for Table 3 and Figure 2 show clearly that the bounds derived from the 

historical distribution cannot identify trades leading to improvements in expected utility. 

Both the upper bound for the call bid price and the lower bound for the put ask price are 

too high with respect to the observed market prices in Sample 1, leading to very few call 

bound violations and a very large number of put bound violations. In Sample 2 we have 

the reverse though less apparent a situation: there are many call upper bound violations 

while there are virtually no put lower bound violations. These findings lead to a 

conclusion that in our sample the historical distribution is not the appropriate information 

set to search for market option prices implying stochastic dominance violations.  

Therefore, in what follows, we mostly focus on the forward-looking and realized 

distributions. 

 

The estimation of the bounds with the use of the forward-looking distribution identified 

approximately each fifth and tenth call bid price violating the upper bound in, 

respectively, Sample 1 and 2.  The pattern for the put ask price is reversed, with few 

violations in Sample 1 and 7.4% of violations in Sample 2.  These proportions of 

violations for calls increase significantly in both samples when the bounds are estimated 

with the strongest information set, which is the distribution of returns realized till the 

maturity of an option; this increase is less apparent for puts. The large number of 

violations of these bounds, which are estimated with the “best possible information” 

about the underlying return distribution, raises questions about the ability of the market to 

                                                 
17

 As before, we use a trinomial model with Black-Scholes type of assumptions to derive implied volatility. 
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forecast accurately market returns, an ability that is taken for granted in many empirical 

studies of option pricing.
18

 

 

A more detailed analysis of the patterns of the violations shows clearly that most options 

violating the bounds were out-of-the money (OTM), for both calls and puts. This is 

shown very clearly in Figure 3, which plots the size of the violations relative to the 

corresponding bound as a function of the degree of moneyness of the option.
19

 The size 

of the violations was very large for call options, with the median violating quote equal to 

1.245 of the upper bound, while for puts the same median quote was only 0.948 of the 

lower bound. Note also that the large proportion of dates in which violations were 

observed masks significant clustering that was observed in the data, especially for puts. 

Of the 1133 violations for call options observed in 39 days out of a total of 141 there 

were three dates accounting for 371 violations, 32% of the total. For put options the 

clustering is much stronger, with three days accounted for 131 violations, or 62% of the 

211 violations observed in 16 days out of a total of 140. By contrast, there were no 

significant differences in the violations between quarterly and serial options in both 

Sample 1 and Sample 2.   

 

(Figure 3 about here) 
 

 

The use of an 8% risk premium leads, as expected, to a decrease in the proportions of 

violating option prices, mostly within a range of 25 to 50%.  This decrease is quite large, 

which is somewhat surprising in spite of the large increase in the parameter: the expected 

return in (2.8)-(2.11) plays the role of the discount rate in risk-neutral option prices, and 

such prices are relatively insensitive to it. The impact of the size of the risk premium on 

the size of the bounds is distribution-dependent and is much higher for the less volatile 

forward Sample 1 distribution than for Sample 2; the impact is also stronger for OTM 

than for at-the-money (ATM) options. Thus, raising the premium from 4% to 8% 

increases (decreases) the call (put) bounds by a factor of 1.09 (0.9) for a 0.95 moneyness 

in the forward Sample 2, and by a factor of 1.06 (0.93) for ATM options; the 

corresponding figures for Sample 1 are 1.23 (0.8) for OTM and 1.11 (0.89) for ATM.  

 

More surprisingly, the results of Table 3 show that assuming a lognormal underlying 

return distribution has a comparatively small effect in most cases: the proportion of 

violations changes very little in all cases except for the forward-looking distribution in 

Sample 2. This is surprising because our underlying returns data presents many violations 

of lognormality, verified by the Kolmogorov D-test. This robustness of the violations 

when lognormal returns are assumed lends further strength to our utility-improving 

strategies described in the following section. These strategies are applied to the bounds 

violations identified with the forward-looking distributions and the utility improvements 

are verified with both in- and out-of-sample tests in section VI.  

                                                 
18

 Thus, in the large literature on the volatility smile reviewed in Jackwerth (2004) it is frequently assumed 

that the implied volatility extracted from observed option prices is a good estimate of the “true” volatility of 

the underlying asset.  
19

 This reflects to some extent the fact that most option quotes in our samples were OTM. 
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 IV. Utility-Improving Strategies by Trading on Mispriced Options  

 

In this section we develop a model of a particular investor with CPRA preferences in 

order to measure utility improvements arising out of trading strategies to exploit the 

mispriced options identified in the previous section. The model is an adaptation of the 

one developed by Constantinides (1986), shown in Appendix C, in which the investor 

maximizes the expectation of the discounted sum of the utilities of consumption 

( ) ,  1t
t

c
u c

δ

δ
δ

= <  over an infinite horizon.
20

 Consumption ct comes out of the riskless 

asset and is of the simple type, implying that it is a constant proportion β of the riskless 

asset xt. The distribution of the risky asset 1t

t

S

S

+ , which was left unspecified in the 

estimation of the bounds, is assumed by the investor to be lognormal with mean µ  and 

volatility σ; in our numerical work these parameters are set equal to those of the assumed 

“true” data generating process.  Further, as argued in Appendix C we set the stream of 

dividends 1t
t t

t

S
y

S
γ +  accruing to the bond account approximately equal to *

λ
t t t

x x hγ ≡ , 

where *λ  is equal to 

1

2 2
1

(1 ) (1 )

* r r
λ

µ γ µ γ
δ σ δ σ

−
   + − + −

= −   − −   
. In such a case (2.3) becomes  

 

1 1 2{ max[ , ]} (1 )(1 )
t t t t t

x x v k v k v R hβ+ = − − − − + ,   (2.3’) 

 

and the asset dynamics (2.3) and (2.4) become, for 
t

v =0 and for t∆  denoting the length 

of the time partition: 

 

1 [1 ( ) ( )]
t t

x x r h t o tβ+ = + − + ∆ + ∆ ,  1 [1 ]
t t

y y t tµ σε+ = + ∆ + ∆ .   (4.1) 

 

Here r is the riskless rate, µ is the ex-dividend expected return to the risky asset and σ is 

a volatility parameter, with the random variable (0,1)Nε ∼ . As 0t∆ →  (4.1) tends to the 

asset dynamics of the Constantinides (1986) model adapted for dividends 

 

( )

  .

dx r h xdt

dy ydt yd

β

µ σ ω

= − +

= +
,      (4.2) 

 

where ω  is a Wiener process.  

 

As shown in Constantinides (1986) the optimal portfolio revision policy in his model 

contains a no trading (NT) region, expressed by two limits λ andλ on the proportion 

                                                 
20

 As noted in section I, the model is unchanged if a finite but realistically large horizon is assumed. 
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/
t t

y x . The value function of the investor without a position in the derivative (the V-

investor) then becomes 

 

1[ , ; , , , ] { ( ( )) } { ( ) }t s

t t

t t

V x y t Max E e u c s ds Max E e c s ds
ρ ρ δβ λ λ δ

∞ ∞
− − −≡ =∫ ∫ ,  (4.3) 

 

where the maximization is over c(s), the consumption at s, /c xβ ≡  is the parameter of 

the simple consumption policy, ρ is the time discount factor which is assumed equal to 

the continuous time riskless rate r, and Et is the current time expectation over the Wiener 

processω  in the dynamic equations (4.2). With the addition of dividends it is also shown 

in the appendix that the value function V defined in (4.3) is equal to the function V
γ
 given 

by the following expression, which is an adaptation of the equivalent expression in 

Constantinides (1986) in the absence of dividends 

 

1 1 2 2

1 2( , ; , , ) ( / )
( )

s s s s
V x y x A x y A x y

r h

δ
δ δγ δβ

β λ λ δ
ρ δ β

− −= + +
− − +

,  (4.4) 

where (s1, s2) are the roots of: 

 

0)]([)2/()2/()( 222 =+−−−−+−−+≡ hrshrssf βδρβσµσ ,  (4.5) 

 

and (A1, A2) are free parameters derived from substituting the value function (4.4) into the 

following boundary conditions (4.6ab) 

 

 

λ y/xVVk yx ≤=+   , )1( ,      (4.6a) 

and 

 

λ≥=− xyVVk yx /  ,)1( .      (4.6b) 

 

These yield the following equations for (A1, A2) 

1

22

1

112211
2121 ])()(1)[1(

−− +=−+−++ ssss
sAsAsAsAk λλλδλδ       (4.7a) 
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and 

1

22

1

112211

2121

])()(1)[1(
−−

+=−+−+−
ssss

sAsAsAsAk λλλδλδ  .    (4.7b) 

 

Next we maximize the value function (4.4) with respect to the three unknown 

parameters ( , , )λβ λ  and find the values of these parameters by solving the resulting first 

order conditions, taking also into account the boundary conditions (4.6ab). The equations 

are solved numerically in the empirical work. The maximized value function (4.4) is then 

used as the value function ( ,  ,  ) 
t t

V x y t that we use in evaluating the improvement in 

expected utility as a result of adopting the arbitrage strategy. 

  

The assets in the investor portfolio follow the discrete time dynamic equations (2.3’) and 

(2.4) without adjustment whenever the ratio /
t t

y x  lies inside the NT region ( ,  )λ λ . 

Outside the NT region the optimal policy was shown by Constantinides (1986) to be of 

the simple type, corresponding to investing to the nearest border of the NT region. 

Analytically, by combining (2.3’) and (2.4) with the simple investment policy we have:  
 

1

2

( ) /[ (1 )(1 ) (1 )]  ,            /  ,

0 ,                                                              / [  , ],

( ) /[ (1 )(1 ) (1 )]  ,            /   .

t t t t t t

t t t

t t t t t t

y v x h v k y x

v y x

y v x h v k y x

β λ λ

λ λ

β λ λ

+ + − − + = <

= ∈

+ + − + − = >

     (4.8) 

 

 

Once the parameters ( , , )λβ λ  have been estimated we can simulate a path of optimal 

portfolio revisions for a V-investor along a path of randomly generated values of 
t

S , 

 1,... ,t T= .  At time t = 0, we form a portfolio containing N0 shares of the index, with N0 

set at 1.5 in our numerical work in order to satisfy the relations (2.12ab). The dollar value 

of the riskless asset at t = 0 is determined by fixing the initial position of the investor in 

the NT region; for instance, we set 0 0/y x λ=  ( 0 0/y x λ= ) for the portfolio formed at the 

upper (lower) boundary of the NT region.  The boundaries of the NT region remain 

unchanged throughout the life of an option. Dividends accrue to the bond account at the 

rate γ per period and the investor consumes at the rate β per period from the bond 

account. Immediately before a revision we have
21

: 1 
t t t

y N S−=  and 

1 -1 1(1 )( / )
t t t t t

x Rx N S Sβ γ− −= − + ,  1,... ,t T= . Let '
t

x and '
t

y  denote the dollar value of, 

respectively, the bond and stock accounts immediately after the adjustments due to the 

simple investment policy have taken place.  For each revision opportunity, at the 

prevailing index price, the V-investor makes the following adjustments to her 

stockholdings from (4.8):  

 

                                                 
21

 This formulation implies that consumption takes place right after receiving the interest and cash 

dividends. 
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i. If /
t t

y x λ> : 

2

1

2

/ ( ) /( [1 (1 )]) ,

,

'  ,

' (1 ) .

t t t t t t

t t t

t t t

t t t t

N v S y x S k

N N N

y N S

x x N S k

λ λ

−

∆ = = − + −

= + ∆

=

= + ∆ −

       (4.9a) 

ii. If /
t t

y x λ< : 

1

1

1

/ ( ) /( [1 (1 )]) ,

 ,

'  ,

' (1 ) .

t t t t t t

t t t

t t t

t t t t

N v S x y S k

N N N

y N S

x x N S k

λ λ

−

∆ = = − + +

= + ∆

=

= + ∆ +

         (4.9b) 

iii. If /
t t

y xλ λ≥ ≥  the investor does not trade. 

 

 

Suppose now that at some time t<T an observed call option bid price C exceeds the value 

given in (2.8)-(2.9). Then CP (2006) show that a utility-improving strategy for the V-

investor is to write a call option and add the proceeds to the cash account. The investor 

becomes thus an investor with an open position in a derivative, a J-investor. If the 

immediate exercise value  -   
t

F K exceeds the value ( , )
t

N S t given in (2.9) the investor is 

assigned;
22

 otherwise, the proceeds are transferred to the stock account and, as described 

in CP (2006), her utility would improve, since  

 

 

1( ,    /(1 ),  )   ( ,  ,  ). J x y C k t V x y t+ + ≥     (4.10)  

 

 

The J-investor will be assumed to follow the same simple portfolio revision policy as the 

V-investor, with the difference that the J-investor would be assigned if at any time 

( , )t i t T+ ∈ the immediate exercise value  -   
t i

F K+  were to exceed the 

value ( , )
t i

N S t i+ + . Once the J-investor is assigned she becomes automatically a V-

investor, with the exercise proceeds subtracted from the cash account. 

 

Similarly, if a put option ask price P lies below the value given in (2.10)-(2.11) the 

investor purchases the option from the cash account, thus becoming a J-investor. If the 

                                                 
22

 Note that the assignment policy built into (2.8)-(2.9) is the least beneficial for the short option holder; see 

the definition of the J-function in equation (25) of CP (2006). Any other assignment would increase even 

more the utility of the short position. 
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option price is less than the immediate exercise value 
t

K F−  the option is exercised; 

otherwise the cash account is restored to its original value by selling stock from the stock 

account, in which case her utility would improve, since  

 

 

2( ,   - /(1 ),  )   ( ,  ,  ). J x y P k t V x y t− ≥       (4.11) 

 

 

Here again the J-investor will be assumed to follow the same simple portfolio revision 

policy as the V-investor, with the difference that the J-investor closes her position by 

exercising the option if at any time ( , )t i t T+ ∈  the immediate exercise value 
t i

K F +−  

exceeds the value 2

1

1
( , )

1
t i

k
M S t i

k
+

−
+

+
. The J-investor becomes thus a V-investor by 

adding the immediate exercise value to the cash account. In other words, the J-investor 

with the open position in the derivative revises her portfolio according to (4.9ab) for the 

same ( , , )λβ λ  parameters as the V-investor. Clearly, if there is a utility improvement 

with this constrained policy there will also be an improvement if the J-investor adopts an 

unconstrained utility maximizing portfolio revision policy. 

 

In the next section we demonstrate that the utility improvements of the J- over the V-

investor also correspond to conventional second order stochastic dominance (SSD) of the 

liquidating portfolio wealth at option expiration T of the J-investor over the V-investor. 

This SSD criterion is then applied to assess the utility improvements for the bounds 

violations identified in section III for both in-sample and out-of-sample tests. 

  

  

 V. Bounds Violations and Stochastic Dominance 

 

The traditional stochastic dominance criterion refers to a pairwise comparison of two 

distributions, loosely identified with the returns of alternative investment strategies. Let X 

and Y be two random variables whose cumulative distributions are respectively F and G. 

Then X exhibits SSD over Y if and only if the following relation holds
23

 

 

 

( ) ( ( ) ( )) 0
z

H z G t F t dt
−∞

≡ − ≥∫        (5.1) 

 

for all values z within the domain of the two distributions. If (5.1) holds then the expected 

utility of any risk averse investor is higher if she chooses X rather than Y. In other words, 

[ ( )]   [ ( )] E u X E u Y≥ for all increasing and concave functions u(.). Further, H(+ ∞) can 

                                                 
23

 See, for instance, Hadar and Russell (1969) and Hanoch and Levy (1969).  
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be easily shown to be equal to the difference in expectations [ ] -  [ ]E X E Y .
24

 This SSD 

criterion has had only limited applications in portfolio selection problems, since it is a 

single period comparison, which makes it rather unsuitable for dynamic portfolio 

selection problems.  

 

It is, nonetheless, possible to use this criterion in our case in order to assess the utility 

improvements in adopting the appropriate trading strategy whenever the option bounds 

(2.8)-(2.9) or (2.10)-(2.11) are violated. We demonstrate in this section a transformation 

of the relations (4.10)- (4.11), the larger expected utility of the J- over the V-investor 

when the derivative price violates the respective bounds (2.8)-(2.9) and (2.10)-(2.11). 

This transformation compares the cumulative portfolio returns to option expiration of the 

J- and the V-investors in a relation similar to (5.1). Given now that (5.1) is satisfied for all 

z, we use (5.1) for z = +∞  in order to assess the improvements in expected returns for 

particular trading strategies. The procedure will be illustrated in detail for trading 

strategies adopted when there is a violation of the call upper bound (2.8)-(2.9), with the 

procedure for exploiting violations of the put lower bound (2.10)-(2.11) treated as an 

extension. 

 

We consider two investors of the V- and J-type who start with the same initial 

portfolio 0 0( , )x y  containing N0 shares of stock and liquidate their portfolios at option 

expiration time T. At some time [1, ]Tτ ∈  the J-investor is assigned and her cash account 

is reduced by the amount  -   F Kτ . Let RkT and NkT , k = v, j, denote, respectively, the 

holding period returns and the number of shares held at the call expiration T, with the 

subscripts v and j indicating the V- and J-investors.  In order to derive a single measure of 

portfolio return that includes the transaction costs and makes RvT comparable to RjT , we 

compute the returns by applying the liquidating values of the V- and J-portfolios at time 

zero
25

 and at the option expiration T, inclusive of dividends and of any intermediate 

assignment of the J-investor.  Let λ  denote the /y x , the stock to bond proportion right 

before the zero-net-cost position has been adopted by the J-investor at time zero, and let  

 

 

0 0 0 1/ (1 )n C S k≡ +        (5.2) 

 

 

denote the number of extra shares acquired by the J-investor with the proceeds from 

writing one call option at a price of C0. Then we have: 

      

 

                                                 
24

 Note that by definition the random variable X is less risky than Y in the Rothschild-Stiglitz (1970) sense, 

since its distribution exhibits SSD over that of Y. Hence, if we were to adjust the difference in expectation 

by a risk factor (for instance by computing the Sharpe ratio) the adjustment would, if anything, magnify the 

difference in unadjusted expectations. 
25

 Alternatively, we can use the acquisition value at time zero with identical results.  
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(5.3)    

     

where the decision variables vt and jt are determined in (4.8) and (4.9ab), R is the riskless 

return observed at t = 0 for the expiration time T, dt denotes an equal in each trading 

period dividend payment per one share, and Dk is the dollar value at T of dividends 

arriving in a portfolio throughout the life of an option. The first term in the numerator of 

the expressions for RkT in (5.3) above implies that we measure the value at T of the entire 

portfolio transformed into bond holdings at time zero.  The next two terms, however, 

subtract (add) the values at T of any changes due to the bond account dynamics incurred 

in the course of the life of an option. 

 

Similar relations also hold when a trading strategy is adopted in the case of a violation of 

the put option lower bound (2.10)-(2.11), which are similar to (5.3) and are not repeated 

here for the sake of brevity. In such a case the amount of extra shares n0 in the trading 

strategy of purchasing a put option is subtracted from N0 and instead of (5.2) we 

have 0 0 0 2/ (1 )n P S k= − , where P0 is the put option ask price. Similarly, the last term in 

the numerator of RjT in (5.3) is replaced by the payoff of the put option, [ ]K Fτ
+−  which 

is now added rather than subtracted.    

 

The random variables 
vT

R and 
jT

R as given in (5.3) are the counterparts of the variables Y 

and X, whose distributions G and F enter into the SSD relation (5.1). They embody three 

different random effects, the assignment time τ and the associated stock price Sτ , as well 

as the error term τε  entering into the cost of carry relation (2.5) through the futures 

price Fτ . While no closed-form expressions can be derived for the distributions of 
vT

R  

and 
jT

R , it is possible to estimate them empirically by Monte Carlo simulations. In these 

simulations the V- and J-investors assume lognormal index returns as in section IV and 

revise their portfolios accordingly, but the index evolves according to the empirically 

derived distributions used to evaluate the bounds in section III, as does the error term in 



 21 

(2.8). The estimated distributions of 
vT

R and 
jT

R  are then substituted into (5.1) in order to 

verify the SSD relation. This is done in the next section. 

  

  

 VI. Bounds Violations and Utility Improvements: Empirical Results 

 

The first step in measuring the utility improvements of trading in mispriced options is the 

estimation of the NT region according to the Constantinides (1986) model, with the 

characteristics of the corresponding distribution used in estimating the bounds whose 

violations we have observed. In addition to the two first moments of the distribution, the 

NT region also depends on the risk aversion parameterδ . We use three values ofδ , -3, -5 

and -10. Table 4 shows the NT region for all the relevant cases. 

 

 

 

(Table 4 about here) 
 

 

We consider a starting position of the investor at some point within the NT region. Given 

an observed bound violation, the utility improvement of the J- over the V-investor will 

depend on the number of shares N0 at time zero per one zero-net-cost position strategy 

represented by the writing of one call option (purchase of one put option) and increasing 

(decreasing) the bond account. In our simulations and tests we keep this number equal to 

1.5 in order to satisfy the monotonicity sufficient conditions (2.12ab). Given this 

constraint, the size of the initial portfolio 0 0( , )x y  is uniquely determined by the position 

within the NT region. In our tests we vary this position within the NT region, from 

0 0/y x λ=  to 0 0/y x λ=  for all risk aversion parameters. Clearly, the highest utility 

improvements will be observed for portfolios with the highest proportion in the risky 

asset; these will be the portfolios for δ  = -3 and for 0 0/y x λ= .
26

   

 

For each starting portfolio within the NT region we measure the utility improvement of 

the J- over the V-investor by simulating paths of the assets in the investor portfolio till the 

option expiration. The asset dynamics follow the relations (2.3’) and (2.4), with the ex-

dividend return 1t

t

S

S

+  sampled from the distribution used in the estimation of the bound 

that was violated, and the portfolio revision parameter 
t

v  calculated from (4.8)-(4.9ab) 

given the NT region ( , )λ λ . For each such simulated path we note the corresponding 

returns 
vT

R and 
jT

R  of the V- and J-investors from (5.3), and for a sufficiently large 

number of such paths we construct the distribution functions , ,  
k

G k v j=  of 
vT

R  and 
jT

R . 

We then apply the SSD criterion (5.1) to the two distributions , ,  
k

G k v j= , by estimating 

the following relation 
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 Note that the initial portfolios will not be of the same size. 
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0

0( ) ( )
z

v j
H z G G dz

−∞
≡ −∫     (6.1) 

 

 

for all z0 within the domain of the distributions. As discussed in the previous section, 

( )H ∞  (alternatively, the value of H  at which 1
v j

G G= = ) is the expected excess return 

across all the return states.  For the J-investor portfolio to show SSD over the V-investor 

portfolio 0( )H z  must be nonnegative for all z0.  A sufficient condition for this is that 
v

G  

and 
j

G  cross only once at some value in which
jT

R  = 
vT

R , corresponding to a stock price 

denoted by 0

T
S , since 

v
G  is clearly above 

j
G for “small” values of z0. 0( )H z  is estimated 

by numerical integration, and a non-negative 0( )H z  for each z0 will provide evidence for 

the improvement in expected utility from adopting the zero-net-cost trading policy for 

each mispriced option. 

 

Due to the heavy computational requirements, we do not apply in our numerical work the 

above procedure to all the identified bounds violations in Table 3. Such estimations 

would have a low informational content, given that they are essentially equivalent to in-

sample testing. Nonetheless, in all the Monte Carlo simulations that were performed we 

found that 0( )H z  had a single zero, thus verifying the conventional SSD criterion (6.1) 

for the two distributions , ,  
k

G k v j= . In fact there are a priori reasons to expect the 

distribution of 
jT

R  to exhibit such a single crossing property over that of 
vT

R . We 

demonstrate this SSD by conditioning on the assignment time τ as well as on the error 

term τε , and then by comparing the V- and J-investors’ portfolio returns as if liquidation 

has taken place atτ, denoting these returns by
v

R τ and
j

R τ . We also assume that the 

portfolio revision variables vt and jt and their associated transaction costs are 

approximately equal in the expressions (5.3).
27

 These returns now become, in the case of 

the call option: 

 

0 0 2

0 0 2

0 0 0 2

0 0 2

0 2

0 0 2
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τ
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τ
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λ

λ

λ

+

+

+ − +
=

− +

+ + − + − −
=

− +

− + − −
≡ − =
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    (6.2) 
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 Note that Constantinides (1986) has shown that the frequency of trading in the presence of transaction 

costs is very low, since the investor stays mostly in the NT region. 
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In (6.2) D is the dollar value at τ of dividends per one share accruing in a portfolio 

throughout the life of an option. Replacing Fτ  from (2.5) we note that for any given error 

τε  the excess return of the J-investor reaches its maximum at 
( )K

S τ
τ

τ

ε
α
−

=  and 

decreases afterwards.  It is positive (negative) to the left (right) of the unique stock price 

atτ: 

 

0

0 2 0{( ) / }/[1 (1 ) ]S K n D k nτ τ τε α≡ − + − − .        (6.3) 

It follows, therefore, that for any given value of τε  
v

R τ and 
j

R τ cross only once, with 

j
R τ > (<) 

v
R τ  for low (high) values of Sτ . Further, replacing n0 from (5.2) in the last 

expression of (6.2) and noting that the call price C0 by assumption exceeds the upper 

bound (2.7)-(2.8), we can easily see that [ , ] [ , ]j vE R E Rτ τ τ ττ ε τ ε≥ . Hence, all risk averse 

investors would prefer 
j

R τ to
v

R τ . In our empirical work we observe that these properties 

of 
v

R τ and 
j

R τ  from the approximate model (6.2) also apply to 
jT

R  and 
vT

R  given by the 

exact model (5.3), which considers both transaction costs and any assignment timeτ. 

       

We examine several artificial cases of call options under the historical
28

 and forward-

looking distributions. We compute the upper bound for a call (lower bound for a put) 

under a given distribution and assume that the observed call price exceeds (lies below) 

the bound by a factor of 1.25 (0.95), equal to the median observed violation. Then we 

apply the procedure outlined in the beginning of this section and estimate ( )H ∞  to 

measure the utility improvements. For these tests we use as a base case a risk aversion 

parameter δ = -3 and distributional parameter values typical for our data: the dividend 

yield γ is 2%, the riskless rate r is 4%.   

 

Figure 4 displays ( )H ∞ , the annualized expected excess return of the J- over the V-

investor as a function of the portion of the NT region where the portfolio process has 

originated separately for calls and puts, with 100% representing the case 0 0/y x λ= . 

Panels A and B plot the expected excess return for all three distributions at- and out-of 

the money, and panels C and D concentrate on the forward distribution for Sample 2, the 

one exhibiting the least excess return. Panel C examines five different degrees of 

moneyness, and panel D varies the risk aversion parameter from δ  = -1 to δ  = -10.  

 

As expected the results show a strong dependence of the utility improvements on the risk 

aversion coefficient and, to a lesser degree, on the initial portfolio position. Somewhat 

less expected is the equally strong dependence on the degree of moneyness of the option 

                                                 
28

 Recall that we use separate historical distributions for Sample 1 and 2.  Since they are very similar, as 

may be seen in Table 1, we use only the distribution for Sample 1 in our tests. 
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and, especially, on the sample used for the estimation of the bounds. Sample 1, which is 

the low volatility sample, shows the strongest utility improvements. In almost all call 

option cases, though, the improvements are spectacular for the basic risk aversion 

parameter of δ  = -3, considering the fact that they represent excess returns in a setting in 

which the annual cum-dividend risk premium on the index is only 4%. In many instances 

the expected excess returns of the utility-improving strategies are equal to or larger than 

2%, the risky portion of the risk premium on the index. The improvements are much less 

significant for the put options, for which the median size of the observed violations is 

significantly smaller. 

 

 

(Figure 4 about here) 
 

 

These results are only suggestive as to the validity of our estimated CP (2006) stochastic 

dominance bounds as utility-improving reservation trading option prices. The utility 

improvements are dependent on the accurate estimation on the part of the investor of the 

underlying distribution of the risky asset. The next set of tests, however, admits the 

imperfect knowledge of the distribution and examines the potential utility improvements 

from trading on mispriced options ex post, given the observed realized return 

distributions to option expiration, the “best possible information” about the underlying 

return distribution. This is clearly the equivalent of an out-of-sample test, since these 

realized distributions were not used in deriving the bounds and identifying their 

violations.  

 

For these tests we use the violations observed under the two forward-looking 

distributions. Altogether, we observed 1133 violations for calls, 795 in Sample 1 and 338 

for Sample 2; the corresponding numbers for puts were 211 in total, of which all but 13 

were in Sample 2. For the two forward-looking distributions we compute the NT region 

for an investor with a risk aversion coefficient δ =-3 as detailed in section IV, and we 

consider a starting portfolio at the upper boundary of the NT region, where 0 0/y x λ= . 

For the asset dynamics (2.3’) and (2.4), however, we use the realized distribution till the 

expiration of each option, which is used in Monte Carlo simulations of the path of the ex-

dividend return 1t

t

S

S

+  till option expiration in order to derive the ( )H ∞  utility 

improvement metric as in (6.1). Appendix D provides an example of this procedure for 

one particular observed violation. 

 

This test approximates closely the situation facing an investor who computes the option 

bounds from “noisy” data on the underlying returns and is willing to use them as 

reservation trading prices to identify mispriced options. The investor’s portfolio 

adjustments take place under the lognormality of returns assumption, since this is the 

only one for which closed-form expressions exist. In spite of these such an investor 

would have realized highly significant expected excess returns for call options under the 

“best possible information set” return distribution: in 871 cases, 76.9% of the total, the 
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expected excess return was positive and the average value of ( )H ∞  was 1.73%. These 

numbers reject clearly the null hypothesis that these gains are due to chance with 

significance levels of less than 1e-5. The results for put options were reversed, with the 

expected excess return significantly negative, but the numbers were much smaller than 

for the call options. As a result, the combined sample of violations for both calls and puts 

gave a proportion of positive expected excess returns of 65.8% and an average expected 

excess return of 1.05%, both numbers being significant at levels in excess of 1e-5. 

 

Given the importance of this test, we verify its results by applying our trading rule to the 

next observed quote following the violating observation in that same day; we do not 

verify whether this next quote violates the bound. The total set of observations was 

reduced to 1087 from 1133, since there were no follow up quotes for some observations 

within the same day. The results were, not surprisingly, somewhat weakened, but they 

still remained similar to the ones reported above. For the 925 calls the mean excess return 

was 1.598%, with a 76.22% probability of a positive excess return for the J-investor, 

highly significant on the basis of the sign test against the null hypothesis of zero excess 

return. For the 162 puts the results were reversed, but the combined sample of 1087 

options again gave highly significant excess returns of 1.206%, with a probability of 

68.44% of a positive excess return, again highly significant by the sign test.    

 

An alternative out-of-sample test is the comparison of the policy of writing (purchasing) 

overvalued call options (undervalued put options) identified through the filters of the 

option bounds (2.8)-(2.11) against the policy of writing (purchasing) a randomly chosen 

sample of call (put) options of equal size. For such a test we use the actual path of the 

index futures till option expiration for each one of the mispriced options. We also assume 

perfect knowledge of the realized futures prices till option expiration in deriving the 

exercise policy against the J-investor, thus biasing the excess return against the J-

investor.
29

 For the 1133 call options violating the upper bounds estimated with the 

forward distributions this policy yields a total of 693 positive excess returns with an 

average excess return of -2.14%. In spite of these results a bootstrapped distribution 

drawn out of our total data shows that there is only a 7.66% probability that a randomly 

chosen sample of 1133 written calls from our data would outperform these numbers. The 

repetition of this test with the 925 calls of the next observed quote gave similarly a total 

of 556 calls with positive excess returns, with an average excess return of – 2.224%, yet 

the probability of besting these results was only 12.12%. Hence, the call upper bound 

(2.7)-(2.8) estimated with the forward samples is a valid selector of overvalued call 

options.  

 

The equivalent results for put options were even more impressive: for the 211 

undervalued options the J-investor realized positive excess returns in 105 cases with an 

average excess return of 5.42%. The bootstrapped distribution of excess returns from 

purchasing 211 put options randomly chosen each time from our data showed that the 

probability of achieving a better performance for the J-investor was effectively zero. This 

result was confirmed with the 162 put options of the next quote sample, implying that the 

                                                 
29

 The tests were also done by constraining assignment or exercise at option expiration. The results were 

very close to the ones reported here. 
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put lower bound (2.10)-(2.11) estimated with the forward samples is a valid filter for 

identifying undervalued put options.                   

 

 

 VII. Conclusions 

 

In this paper we have examined the empirical implications of the Constantinides-Perrakis 

(2006) futures options bounds in the presence of transaction costs. We used several 

assumptions about the distribution of the underlying asset, the S&P 500 index. All these 

assumed distributions were based on histograms drawn from observed market data 

without imposing any particular class of distributions. We also included the error of the 

cost-of-carry formula, a key element in the evaluation of the bounds.  

 

First we examined whether observed call (put) futures option bid (ask) prices satisfy the 

corresponding CP bounds for the two cases where the bounds are tight and relatively 

invariant to the size of the transaction cost parameters. The bounds were computed on the 

basis of the estimated index return distribution. We found the best results, the smallest 

number of violations of the bounds, with a forward looking sample of index values that 

was broadly time wise coincident with the option sample. Still, a substantial number of 

violations remained, especially for call options, giving opportunities for realizing 

stochastically dominant superior returns.  

 

We then examined trading strategies to exploit these observed violations for a 

representative investor with CPRA utility. For such strategies we measured the 

improvements in expected utility by constructing a portfolio whose compound return till 

option expiration would dominate stochastically in the second degree the optimal 

portfolio of an identical investor who does not adopt the strategy. The compound returns 

of both investors are net of transaction costs. We find that the expected excess return 

from the stochastically dominating strategy is significant in all cases, depending on the 

degree of violation, the underlying distribution, the investor risk aversion and the 

moneyness of the option. Last but not least, we examined the effects of the adoption of 

these stochastically dominating strategies for the observed bounds violations in our 

samples. We found that these strategies would have brought significant excess returns to 

the CPRA investor even though the underlying asset followed a different distribution than 

the one assumed in deriving the bounds.  

 

It should be noted that, although the utility improvements were measured under the 

investor’s assumption of a lognormal diffusion asset dynamics, the results are most 

probably robust against any other investor-hypothesized distribution. As Constantinides 

(1979) showed, the assumption of a CPRA utility is sufficient to produce a compact no 

trading region in managing the investor portfolio. For the short-lived options examined in 

this paper this means that the number of portfolio adjustments and the resulting 

transaction costs during the life of the option would be very small, thus preserving the 

static stochastic dominance result described in relations (5.4) and (5.5). 
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We have, therefore, shown first that the number of observed violations of the CP bounds 

was relatively small, and second that the stochastically dominant trading strategies when 

violations are observed do produce significant expected excess returns, both in- and out-

of-sample. Furthermore, unlike violations of option pricing results observed under the 

dominant arbitrage methods, these trading strategies do take place under realistic 

conditions, with the appropriate transaction costs. Hence, the CP bounds are "legitimate" 

option bounds in the presence of transaction costs for S&P 500 index futures options.  
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Appendix 
 

 

A.  Description of the Data 

Our primary data set consists of Chicago Mercantile Exchange (CME) tapes containing 

time-stamped quotes of the S&P 500 futures options and the underlying futures for the 

period January 1990-December 2002, with the exception of April 1991-December 1991, 

for which the option data is missing. Some of these options series (quarterly options), 

namely those that mature the day preceding the maturity of the underlying futures 

contract
30

, have delivery terms that effectively imply that they are exercisable only at the 

end of the day. Others (serial options), though, mature before the underlying contract and 

have different delivery terms, which imply that they are exercisable at any time
31

. 

Accordingly we consider those series of options separately in estimating the bounds.  

Overall, we sampled quotes at 141 dates for which 20825 (27085) raw call (put) quotes 

were recorded.  Since the prescribed investment policies require the investor to sell 

(purchase) calls (puts), we collected bids (asks) for calls (puts).  CME, however, flags 

bids (asks) only if a bid (ask) is higher (lower) than the preceding bid (ask); in addition, 

no transaction data is flagged.  These data characteristics would result in a number of 

available call (put) quotes of 3450 (5141).  To augment the data set, we recovered flags 

from non-transacted data for bids (asks) that were lower (higher) than the preceding non-

transacted quote in the daily series for a given strike
32

.  The original and recovered quotes 

entered our sample provided the futures quote could be matched within 10 seconds.  As 

the final screen, we entered in the sample only those options within the moneyness range 

of 0.9-1.05, with the moneyness defined as the F/K (K/F) ratio for calls (puts).  This 

resulted in the final sample of 7001 calls and 8310 puts. 

 

To derive the option bounds, we originate the index process from the index value derived 

from the futures price contemporaneous to an option quote under the perfect cost-of-carry 

relationship.  It has been argued (see, for instance, Jackwerth and Rubinstein, (1996)) that 

the futures quotes provide a better proxy for the S&P then the spot index since futures are 

a traded asset, and it was shown that the spot index quotes lag the index values.  In turn, 

we use this futures implied index value to derive the value of the underlying futures 

contract under the cost-of-carry model (2.6)-(2.7), which assumes the existence of an 

error term in the relationship. We select an empirical proxy for this error term.  Tables A1 

and A2 display the distribution of the error from the cost-of-carry relationship for 1990-

2002, respectively for intraday observations and for the futures settlement price. Quotes 

used to derive the departures from the exact cost-of-carry relationship were sampled eight 

times a day at fixed hours for intraday errors by finding the best time match between the 

cash and futures for a 30-second interval around the sampling time
33

. Cash index quotes 

                                                 
30

 S&P 500 futures options mature at the futures trading close on Thursday preceding the third Friday of a 

month. 
31

 The S&P futures contracts mature in the March quarterly cycle, which implies that there is twice as much 

sampling dates for serial than for quarterly options.  
32

 As a safeguard against misreading flags, we verified that the results for the recovered were not 

qualitatively different from those for the exchange flagged quotes. 
33

 The length of this interval was set to guarantee finding quotes for both assets. 
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were obtained from CME.  From these tables it is clear that an errorε = 1% from the 

perfect cost-of-carry futures price would include all but a few outliers of the observed 

error during the entire period. A value of ε = 0.5% would lie beyond three standard 

deviations above the mean and the median for the settlement price and would include 

more than 99% of the observed errors. For intraday observations such a value would lie at 

above two standard deviations from both mean and median and would include around 

95% of the observed errors.  We use this last value ofε = 0.5% of the futures price to 

proxy for εt in (2.6) to transform the modeled index process into the value of the 

underlying futures at each time t in (2.8)-(2.9) and (2.10)-(2.11).  We also assume that 

this empirical proxyε  will also compensate for imperfect simultaneity in index and 

futures quotes, as well as for the bid-ask spread in futures at the matching of an option 

and a futures quote.  Notice that it is apparent from (2.8)-(2.9) and (2.10)-(2.11) that a 

positive error term increases (decreases) the upper (lower) bound.  

 

(Tables A1 and A2 about here) 

 

 

B. A Lattice Model for the Estimation of the Bounds 

To derive the bounds (2.8)-(2.11) we use empirical distributions of daily S&P 500 returns 

estimated from the samples described in section III. Since the estimation of the bounds 

becomes very quickly explosive with any realistic number of distinct states in the daily 

returns distribution, we use a lattice method to aggregate numerically similar index 

returns. The procedure is summarized below, with a full description of the method 

available from the authors on request.  

 

Consider a discrete distribution with n states in one period.  The convolution of this 

distribution with itself produces n
m
 returns after m time periods. We begin by reducing 

this number of returns by recognizing partial recombinations of the lattice that produce 

identical returns. The probabilities of these returns are aggregated at each time step, thus 

reducing the size of the tree at each period by dealing only with unique returns. Still, the 

size of the tree remains explosive for the values of distinct states n used in this paper.  

 

The next step in simplifying the computations is to aggregate together into a single state 

numerical returns that are distinct but “close” to each other. Suppose that at a given time 

step there are N distinct states, whose values and probabilities are denoted by the pair (r, 

p) of vectors in ℜN
+
. We reduce these vectors into M-dimensional vectors (R, q) in ℜM

+
, 

M < N, by defining 

 

1

1 1

;  ,  1... ,
j jm m

j j k k j k

k k

R q p r q p j M−

= =

= = =∑ ∑     (B.1) 
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where (rk, pk) satisfy the relation ( 0.5) ( 0.5)iK r Kε ε− ≤ < +  for K = 0, 1,…Ň, with Ň 

being the smallest number sufficient to cover the largest of the N returns, and  ε +∈�  is 

a rounding factor. 

    

It can be shown that that for a suitable rounding factorε , the reduced distribution (R; q) 

defined in (B.1) approximates well
34

 the full distribution in the context of derivatives 

pricing. Clearly, the accuracy of the approximation, but also the computational time and 

difficulty, vary inversely with the size ofε . Fortunately, for our data and for the time 

horizon chosen in the estimation of the bounds a value of ε  may be found such that the 

reduction in the lattice size yields both computational precision and relative speed.  

 

In the numerical estimation of the bounds we use a 50-state daily returns distribution, 

which must be convoluted approximately 21 times with itself in order to produce bounds 

for 30-day options according to (2.8)-(2.11). The full terminal distribution contains 

1.62e17 unique terminal returns, which are clearly beyond computational capacity. On 

the other hand, a value of ε  = 1e-4 in (B.1) reduces the terminal states to about 3e4, 

which allow both feasible and accurate computations of the bounds.
35

 We present an 

example of the accuracy of the approximation in Table B1, which shows the computation 

of a stylized call upper bound (2.8)-(2.9) evaluated with the empirical distribution 

extracted from the 1997-2002 S&P 500 daily returns.  

 

(Table B1 about here) 

 

In the table we use six different values ofε , varying from 1e-2 to 1e-5, and three 

different daily returns distributions, with 8, 21 and 50 states respectively; the 8-state 

distribution allows exact results in the computation of the bound. It is clear that for the 

four smallest sizes of ε  shown in the table, from 1e-3 to 1e-5, the estimated call option 

bounds are virtually indistinguishable from each other in all cases. Observe also that the 

bounds increase monotonically as ε  decreases, implying that the bounds converge 

uniformly from below to their “true” value. For the chosen value of ε  = 1e-4 that we 

used in our numerical work the increase in the size of the bound as we move to the next 

lowest value of 1e-5 is virtually non-existent.
36

 This is all the more surprising given that 

the reduction in the number of terminal nodes achieved by applying (B.1) is impressive:  

Panel B of Table B1 shows the reduced number of nodes as a proportion of the original 

number of nodes, amounting for the case of interest to a miniscule proportion of 7.50e-14.  

 

 

 

C. The Constantinides (1986) Model with Dividends 

                                                 
34

 The rounding scheme in (B.1) yields the same first moment and decreases only slightly the magnitudes of 

the second, third and fourth moments of the full distribution, even though a reduction occurs at each time 

step.   
35

 The detailed numerical algorithm is available from the authors on request. 
36

 The convergence of the bound computed under the transformation (B.1) to its “true” value was also 

verified by Monte Carlo simulations of European options, by setting the dividend rate equal to zero in 

(2.8)-(2.9). The Monte Carlo method turned out to be less accurate than the transformation (B.1). 
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In this appendix we extend the Constantinides (1986) model to incorporate constant yield 

cash dividends on the risky asset. Assuming continuous deterministic dividend yield at 

the rateγ , the assets’ dynamics now become, instead of (2.1) 

 

( )

 .

dx r xdt ydt

dy ydt yd

β γ

µ σ ω

= − +

= +
       (C.1) 

For (C.1), the resulting Bellman equation has no known closed-form solution
37

.  To 

estimate the adjusted value function ( ,  ,  ) 
t t

V x y t in the case of dividends, we 

approximate the bond account dynamics by substituting in the first equation of (C.1) 

instead of y the value of x multiplied by *λ , the optimal y to x proportion inclusive of 

dividends without transaction costs or Merton line after Merton (1969): 

 
1

2 2
1

(1 ) (1 )

* r r
λ

µ γ µ γ
δ σ δ σ

−
   + − + −

= −   − −   
.      (C.2)   

The approximate bond dynamics are: 

xdthrdx )( +−= β ,        (C.3) 

where *h γλ≡ .  This gives us the system (4.2). 

To prove now the equations for the value function (4.5)-(4.7) we note that under (C.1)-

(C.3) the Bellman equation by Ito’s lemma becomes: 

 
2 2( ) / ( ) ( / 2) 0,    /x y yyx r h xV yV y V V y x

δ γ γ γ γβ δ β µ σ ρ λ λ+ − + + + − = ≤ ≤ .   (C.4) 

If we substitute the value function (4.4) and its appropriate partial derivatives into (C.4) 

and simplify, we obtain A1
1s(y/x) f(s1) + A2

2s(y/x) f(s2) = 0, where f(.) is as defined in 

(4.5).  Since for (D.4) to hold we must have f(s1) = f(s2) = 0, the equation (4.5) follows 

immediately.  Substituting the value functionV
γ into the boundary conditions (4.6ab) and 

dividing by x
δ
 yields the same pair of equations (4.7ab) for (A1, A2) as in the no-dividend 

case. 

 

D. An Illustration of an Out-of-Sample test 

 

On August 8
th

, 1990 we observed a call bid price of 10.10. The estimated call upper 

bound with the corresponding forward-looking sample was 8.98.  The contemporaneous 

futures price was 334.45 and the futures implied index was 333.41. The annualized 

dividend yield till the expiration of the option and the observed riskless rate were, 

                                                 
37

 A review of the dynamic programming literature has revealed that a closed form solution to the Bellman 

equation rarely exists.  See Fleming and Rishel (1975). 
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respectively, 2.85% and 7.13%. Hence, for a total excess return of 4% over the riskless 

rate the corresponding ex-dividend risk premium would be approximately 1.15%. Last, 

the estimated boundaries of the NT region were 1.22 and 9.58. 

 

For that particular option we observed 22 daily index returns till expiration. After 

subtracting the mean and adding the riskless rate and the 4% cum-dividend premium we 

find the following ordered series of returns: 
 

0.97520, 0.98031, 0.98552, 0.98576, 0.98649, 0.98772, 0.98852, 0.98984, 0.99155, 0.99565, 

0.99813, 1.00140, 1.00142, 1.00279, 1.00608, 1.00829, 1.01260, 1.01398, 1.01740, 1.01881, 

1.02530, 1.03098 

 

From this series, by sampling 22 times with replacement we generate a sequence of daily 

returns representing a possible path under the realized returns distribution; we include 

intraday trading in this path by the procedure described in Section III. We then apply 

(5.3) to this path and estimate the returns
jT

R  and 
vT

R of the J- and V-investors, starting 

the portfolios at the upper boundary λ  of the NT region with 1.5 shares for one written 

call in order to satisfy the monotonicity condition. We repeat the sampling and estimation 

1e5 times in order to construct the distributions of 
jT

R  and 
vT

R under the “best possible 

information” index return distribution for that particular observation. After verifying the 

single crossing of the two distributions, we estimate the expected excess return to the J-

investor, which turned out to be 3.27% for that observation. Note that for the return to the 

J-investor we also need to stipulate the exercise policy, which is given by the function 

N(St, t) in (2.8); this function needs therefore to be estimated separately, and its 

comparison to the immediate exercise value yields the exercise policy along each path.  
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Table 1.  Second, Third and Fourth Moments of S&P 500 Daily Returns 
 

Panel A: Historical Daily Returns 

 Sample 1 Sample 2 

 Observed Aggregated Observed Aggregated 

 (N=16633) (N=150) (N=18704) (N=150) 

Volatility 0.18474 0.18467 0.17921 0.17914 

Skewness -0.47747 -0.47796 -0.48068 -0.48123 

Kurtosis 22.36602 22.33360 22.94456 22.97990 

Panel B: Forward-looking Daily Returns 

 Sample 1 Sample 2 

 Observed Aggregated Observed Aggregated 

 (N=2071) (N=50) (N=1509) (N=100) 

Volatility 0.11491 0.11486 0.21223 0.21219 

Skewness -0.17328 -0.17354 -0.06498 -0.06499 

Kurtosis 2.29656 2.30192 2.12150 2.12329 

 

 
 

Table2. Summary Statistics for S&P 500 Daily Returns Realized until Option Maturity 

 

 Mean Median Min Max St. Dev. 

 Panel A: Sample 1 (N=70) 

Volatility 0.1046 0.1011 0.0499 0.2418 0.0374 

Skewness -0.0099 0.0761 -1.7197 1.2739 0.5509 

Kurtosis 0.2149 -0.0788 -1.2617 4.0116 1.1221 

 Panel B: Sample 2 (N=71) 

Volatility 0.1963 0.1825 0.0882 0.4439 0.0719 

Skewness 0.0570 0.0748 -1.0401 0.9904 0.4872 

Kurtosis -0.1194 -0.2995 -1.1988 3.2578 0.8391 
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Table 3.  Violations of the Bounds (2.8)-(2.9) and (2.10)-(2.11) 

 

The table displays the proportions of the option quotes violating the stochastic dominance bounds (2.8)-

(2.9) and (2.10)-(2.11). The top entry corresponds to the bounds estimated by the distribution of the S&P 

500 daily returns; the bottom entry corresponds to the bounds estimated by the lognormal distribution with 

the same volatility.  The entries in brackets represent the percentage of sampling dates in each sample for 

which violations of the bounds were found. 

 

Calls Puts 

Index 

Distribution 

Pr. Violations 

(%) 

(Risk Premium 

= 4%) 

Pr. Violations 

(%) 

(Risk Premium 

= 8%) 

Pr. Violations 

(%) 

(Risk Premium 

= 4%) 

Pr. Violations 

(%) 

(Risk Premium 

= 8%) 

Panel A: Sample 1990 – 1996 

 (N=3826) (N=5620) 

Historical 
5.3 (6)   

5.3 (6) 

4.4 (6)  

4.2 (6) 

63.3 (77)  

65.0 (83) 

52.3 (71)  

56.8 (74) 

Forward 
20.8 (30)  

21.7(31) 

16.0 (23)  

16.2 (24) 

0.2 (1)  

0.2 (1) 

0.0 (0)  

0.0 (0) 

Realized 
34.3 (54)  

37.3 (61) 

20.6 (43)  

21.7 (44) 

0 (0)  

0 (0) 

0.0 (0)  

0.0 (0) 

Panel B: Sample 1997 – 2002 

 (N=3175) (N=2690) 

Historical 
23.4 (53)  

24.6 (41) 

22.8 (41)  

18.8 (36) 

0.0 (1)  

0.1 (3) 

0.0 (0)  

0.0 (0) 

Forward 
8.8 (26)  

10.7 (26) 

5.9 (17)  

6.4 (17) 

7.4 (21)  

7.7 (20) 

2.7 (11)  

3.1 (13) 

Realized 
35.3 (47)  

35.9 (50) 

23.5 (37)  

26.6 (39) 

12.1 (14)  

12.8 (16) 

11.0 (11)  

10.9 (13) 

Panel C: Sample 1990 – 2002 

 (N=7001) (N=8310) 

Historical 
13.5 (29)  

14.1 (24) 

12.7 (24)  

10.8 (21) 

43.3 (39)  

46.5 (43) 

35.4 (35)  

38.4 (37) 

Forward 
15.3 (28)  

16.7 (29) 

11.4 (20)  

11.7 (21) 

3.4 (11)  

5.2 (11) 

0.9 (6)  

1.0 (6) 

Realized 
34.7 (51)  

36.7 (56) 

21.9 (40)  

23.9 (41) 

5.1 (7)  

5.4 (8) 

3.6 (6) 

3.5 (6) 
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Table 4. No Transaction Region  

 

The table displays the proportions of the risky to riskless asset within which it is optimal to refrain from 

trading derived by the Constantinides (1986) model with dividends. The dividend yield γ is 2%, the riskless 

rate r is 4%.  The second moments are as presented in Table 1.  

 

Distribution δ λ  λ  
Merton 

Line 

-3 0.306 0.418 0.415 

-5 0.177 0.244 0.243 Historical 

-10 0.087 0.120 0.119 

-3 0.999 6.013 3.150 

-5 0.885 1.041 1.024 Forward 1 

-10 0.319 0.383 0.381 

-3 0.200 0.288 0.286 

-5 0.121 0.175 0.174 Forward 2 

-10 0.061 0.089 0.088 

 

 
 

 

Table A1. Descriptive Statistics of Intraday Error from Cost of Carry for 1990-2002 

 

Statistics refer to the error ε from the cost of carry relationship F = S exp[(r-γ)T + ε], where F is the price of 

futures underlying serial options, S is the cash index quote contemporaneous with the futures quote, r is the 

observed 3-month T-bill rate, γ is dividend yield based on daily dividends until the futures expiration date, 

T is the time till the futures expiration.  The error was sampled in hour-long intervals starting at the open 

(8:30AM), as well as at the close (3:15PM) for the total of eight times for each day before the expiration of 

the serial options in the sample. Quotes used in the error estimation were found by the best time match 

between the cash index and futures quotes within a 30-second interval around the sampling time.   

 
N 15026 Max 0.0247 

Mean 1.78E-03 99% 0.0081 

Std Dev. 2.24E-03 95% 0.0052 

Skewness -0.5516 90% 0.0041 

Kurtosis 21.6419 Q3 0.0028 

Std Err. 1.83E-05 Median 0.0016 

Pr(Mean=0) <0.0001 Q1 0.0007 

Range 0.0621 10% -0.0001 

Q3-Q1 0.0021 5% -0.0009 

  1% -0.0041 

  Min -0.0374 
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Table A2. Descriptive Statistics of Error from Cost of Carry at the Futures Settlement for 1990-2002 

 
Statistics refer to the error ε from the cost of carry relationship F = S exp[(r-γ)T + ε], where F is the price of 

futures underlying quarterly options, S is the cash index quote contemporaneous with the futures quote, r is 

the observed 3-month T-bill rate, γ is dividend yield based on daily dividends until the futures expiration 

date, T is the time till the futures expiration.  Aggregated cash index quotes for a 30-second interval before 

the close (3:15PM) were compared to the futures settlement price for each day before the expiration of the 

quarterly options in the sample.   

 
N 953 Max 0.0066 

Mean 2.77E-04 99% 0.0045 

Std Dev. 2.14E-03 95% 0.0030 

Skewness -3.7014 90% 0.0024 

Kurtosis 45.1780003 Q3 0.0014 

Std Err. 6.92E-05 Median 0.0004 

Pr(Mean=0) <0.0001 Q1 -0.0006 

Range 0.0369 10% -0.0019 

Q3-Q1 0.0021 5% -0.0029 

  1% -0.0061 

  Min -0.0302 

 

 
 

Table B1. Performance of Reduced Lattice Model 

 

The table displays the performance of the reduced discrete distributions (B.1).  The starting index value is 

1000, strike is 1000, riskless rate is 4%, risk premium is 4%, and dividend yield is 2%.  The maturity of 30 

days is partitioned into 21 trading periods. 

 

ε  n = 8 n = 21 n = 50 

Panel A: Call Bound Values 

1e-2 25.63721 26.48949 26.54064 

2e-3 25.64199 26.84576 27.00539 

1e-3 25.64210 26.85478 27.01661 

2e-4 25.64227 26.85500 27.01687 

1e-4 25.64227 26.85504 27.01691 

1e-5 25.64227 26.85504 27.01692 

0 25.64227 N.A. N.A. 

Panel B: Pr. of Exact Distribution Terminal Nodes 

1e-2 2.00e-04 1.04e-09 7.63e-16 

2e-3 9.49e-04 5.21e-09 3.84e-15 

1e-3 1.83e-03 1.03e-08 7.64e-15 

2e-4 8.03e-03 4.97e-08 3.78e-14 

1e-4 1.50e-02 9.76e-08 7.50e-14 

1e-5 1.15e-01 9.17e-07 7.30e-13 
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Figure 1.  Kernel Regression of the Implied Volatility of Observed Option Prices  

 
The figure displays implied volatility for call bidding prices (put asking prices ) for Samples 1 and 2 

respectively in series Bid 1 and Bid 2 (Ask 1 and Ask 2). 
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Figure 2.  Kernel Regressions of the Call and Put Bounds together with the Observed Option Quotes 

 

The figure displays kernel regression (solid lines) of the implied volatility of the bounds (2.8)-(2.9) and 

(2.10)-(2.11). Index distributions applied to derive the bounds are as described in Section III. Dots 

represent the implied volatility of observed option quotes.  
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Panel B: Call 1997-2002
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Figure 3. Moneyness and Bounds Violations 

 

The figure displays the ratio (Violation Size) of the observed option quotes to the bounds (2.8)-(2.9) and 

(2.10)-(2.101 in relation to moneyness.  Results are for those quotes that were mispriced under forward-

looking distributions as described in Section III.  
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Figure 4a.  Trading on Mispriced Call Options 

 

The figure displays the expected utility improvement metric H(∞) (6.1) for trading in mispriced index 

futures call options under the assumption that the distribution used to derive the call upper bound (2.8)-

(2.9) generates the index return till the option expiry.  Index distributions applied to derive the bounds are 

as described in Section III.  The ratio of a call price to its upper bound is set to 1.25.  Other data is as 

follows:  riskless rate 4%, risk premium 4% and dividend yield 2%.  
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Panel B: δ=-3, F/K = 0.975
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Panel C: Forward 2, δ=-3
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Figure 4b.  Trading on Mispriced Put Options 

 

The figure displays the expected utility improvement metric H(∞) (6.1) for trading in mispriced index 

futures put options under the assumption that the distribution used to derive the put lower bound (2.10)-

(2.11) generates the index return till the option expiry Index distributions applied to derive the bounds are 

as described in Section III.  The ratio of a put price to its lower bound is set to 0.95.  Other data is as 

follows:  riskless rate 4%, risk premium 4% and dividend yield 2%.  
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