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 SUMMARY 
 

 What is the Mathematical Model and How Does it Work for COVID-19? 
 What Does COVID-19 Model Tell Us? 
 How Non-Pharmaceutical Interventions Affect the Spread of the Coronavirus? 
 What is the Best Public Policy for Turn Back to Normal Conditions and is it at all Feasible to 

Return to Normal Conditions?  

 
Abstract 
 
Mathematical modelling allows decision makers to examine “what-if” scenarios under different 
public policies. According to a developed model, a combined physical distancing policy together 
with a nation-wide testing, isolation, and contact tracing of confirmed cases can be an efficient 
public intervention policy provided that it is persistent beyond only a few months. 
 
Mathematical Model and Purpose 
 

 A mathematical model of COVID-19 is a set of equations that aim at simulating the epidemiologic 
spread of the disease based on given factors including the coronavirus reproduction rate, 
comorbidity state of the population that are exposed to the coronavirus, admission rate and 
capacity of the health care system settings, public intervention efforts, among others. 

 The objective is to examine variations in certain interesting variables such as the epidemic attack 
rate (i.e., the percentage of population that is infected with the disease), the number of required 
simultaneous access to the intensive care units (ICUs) as a function of time. 

 The ultimate goal would be to determine the optimum control strategy that would minimize the 
epidemiologic spread and the societal disruption [3], to a manageable level based on an available 
health care system capacity. 
 
Background 
 

 The set of mathematical equations that can model the objectives that are identified above are 
referred to as the epidemiologic system model (ESM). Many recent COVID-19 epidemiological 
system models that are based on the Chinese and the Canadian Community Health Survey, [1] 
and [2], respectively, have been published. 

 The present BN aims to explain the mechanics behind the ESM derived model in [2] and present 
the key results that are obtained therein, and propose further changes to the model to address 
the limitations of the model (as a topic of future work). 
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Key Assumptions and Brief Mechanics of the ESM Model 
 
The basic assumptions used in [2] have been listed in bullets items and the basic mechanics of 
the model is briefly provided and explained in Note-1 to Note-4 below. 

 It is assumed that the recovered individuals remained immune from re-infection for the 
duration of the COVID-19 epidemic  

 Disease transmission within the health care settings have not been included in the model. 
 Variables of the ESM (the model independent variables and states) are as listed below: 

  1- Susceptible 
  2- Exposed 
  3- Exposed and quarantined 
  4- Infectious, pre-symptomatic 
  5- Infectious, pre-symptomatic, in isolation 
  6- Infectious - mild 
  7- Infectious - severe 
  8- Infectious - mild, in isolation 
  9- Infectious - severe, in isolation 
  10- Isolated - mild, not previously in quarantine 
  11- Hospitalized, never in ICU 
  12- Hospitalized, pre-ICU admission 
  13- Hospitalized, in ICU 
  14- Hospitalized, post-ICU 
  15- Recovered 
  16- Dead 

 The model was stratified by 5-year age groups using the 2019 population estimates [4].  
 Contacts within and between age groups were based on the POLYMOD study [5] using contact 

data specific to the United Kingdom  
 The model was further stratified by health status to account for differential vulnerabilities to 

severe infection among those with underlying health conditions. Comorbidity estimates were 
obtained by age from the Canadian Community Health Survey (CCHS) for Ontario and 
included the following conditions, namely: healthy, hypertension, heart disease, asthma, 
stroke, diabetes and cancer [6].  

 Note-1: The above implies that every model variable/state (among the 16 model 
variables/states that are introduced above) is categorized into 5 age groups and sub-categorized 
further into 7 cormobidity health conditions with a total of representing 16x5x7 model 
variables/states. 
 Note-2: In other words, a model variable/state such as x6_i,j(t) denotes the number of non-
isolated individuals within the population at time t having a mild infection in the group age i with 
cormobidity health condition j. 
 Note-3: Each model variable/state at time t2 such as xn_i,j(t2) can be estimated by a weighted 
sum of all the model variables/states at time t1, where t2 is a day after t1. Hence, a motion is 
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generated in the model variables/states in a sense that the number of individuals in a particular 
variable/state change on a day by day basis, depending on the interactions between the 
variables/states. 
 Note-4: Governmental interventions are affecting the epidemiological motion of the model 
through certain weights corresponding to other variables/states. For instance, an effective social 
distancing measure generally drives a particular variable/state at t2 less sensitive to the 
variables/states in t1. 

 In absence of a vaccine, public control measures focus on the use of non-pharmaceutical 
interventions [6]. These non-pharmaceutical interventions include “case-based” measures 
such as testing, contact tracing, isolation (of infected cases) and quarantine (of exposed 
cases); and “non-case-based” measures such as reducing the probability of transmission 
given an effective contact (e.g., hand hygiene and cough etiquette) and physical distancing 
measures to reduce the contact rate in the population. 

 The population is broadly categorized into 3 distinct classes, namely (1) Susceptible (i.e., 
neither exposed nor infected to COVID-19), (2) Exposed, where individuals have been in 
contact with infected people but have not yet manifested symptoms (asymptomatic), and (3) 
Infectious, where COVID-19 had been tested and positively confirmed. 

 Interaction between the above listed three fundamental classes have been identified and 
explained in Figure-1 of [2]. Due to probabilistic nature of interactions, the model itself is also 
producing stochastic results in a sense that the output at each run will be different even under 
non-varied circumstances. 

 It is considered that the COVID-19 patient would either completely recover (in quarantine or 
with hospital care) or yield death in ICU in most severe cases. 

 Limited public health care facilities are considered.  
 
Simulations 
 
The model introduced above has been simulated under the following conditions: 

 Base Case: No public intervention is realized  
 Enhanced Detection: Sufficient amount of resources are allocated in order to timely test 

susceptible individuals. 
 Physical Distancing: Restrictions are devised for each age group in order to reduce the 

probability of exposure among individuals. 
For each scenario the system output includes: (1) Prevalent cases requiring ICU, and (2) 
Percentage of infected population. 

 
Important Findings and Conclusions 
 
Through simulations of the model in [2] the following findings can be observed. 

 The Base-Case scenario (where no public interventions are considered) shows that 50% to 
60% of population could be infected in a relatively short period of time (around 200 days) 
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with maximum attack rates within the age groups of 5-14 years old, until the disease is 
naturally faded away through herd immunity. 

 Prevalent cases requiring ICU in the Base-Case scenario could exceed 0.35% of the population 
(in less than a year) which is 50 times greater than what is possibly administered in Canada 
in short term. 

 Physical distancing proves to be very efficient in terms of controlling prevalent cases requiring 
ICU only when the policy is persisting beyond 12 months. If physical distancing is adopted for 
a 6 months period (for instance), the number of prevalent cases requiring ICU will be reduced 
to half (in comparison with the Base Case) in a dispersed period of time (that is, 300 to 600 
days, instead of a year). This is still far from manageable through existing medical facilities in 
Canada. 

 Physical distancing policy if prolonged beyond 12 months will diminish the total infected 
population to less than 20% after 2 years, whereas Enhanced Testing and isolation of the 
confirmed cases (if administered alone with no physical distancing policy) will have negligible 
effect in controlling the spread of the virus. 

 Physical distancing policy if further prolonged beyond 16 months would be able to stop the 
spread of the virus. 

 In order to control the epidemy through testing/isolation policy (only), the policy has to 
remain enforced well beyond 2 years. 

 A dynamic control strategy can be advisable where a combination of physical distancing with 
testing and isolation of confirmed cases is devised for at least 18 months. In this control 
strategy physical distancing can be relaxed when testing proves that the number of infected 
cases is manageable. Consequently, physical distancing would be switched on and off in 
response to the testing outcomes. 

 
Challenges 
 
The main challenge for pandemic response is that in a fully susceptible population, although non-
pharmaceutical interventions may slow the disease transmission while they are in place, once 
the intervention is lifted (or compliance with the intervention becomes low), transmission of the 
pathogen rebounds rapidly [2], [6], [7]. In case of COVID-19, despite what has been demonstrated 
through simulations it may not be possible to minimize morbidity and mortality, and societal and 
economic disruption at the same time.  

 
Recommendations and Future Work 
 

 Mathematical modelling as presented in [1] and [2] proves to be a useful tool for examination of 
“what-if” scenarios. The shortcomings of the model presented in this BN is in integration of 
control measures with model variables/states. In other words, certain cases with and without 
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public control measures are embedded in the model as distinct variables/states. This reduces 
maneuverability of the model to arbitrary public protocols. 

 In case the models are reformulated with public control protocols as separate inputs, the model 
could be more flexible and responsive. Through collection of data from Canadian health 
organizations it might be feasible to optimize the weight factors defining interactions of the 
system states through machine learning and AI techniques. This eventually entails an online 
controlled architecture that optimizes control inputs in response to the testing outcomes. 
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