
Optimization of the SVM Kernels using an Empirical
Error Minimization Scheme.

N.E. Ayat 1,2, M. Cheriet 1, and C.Y. Suen 2

1 LIVIA, ÉTS, 1100, rue Notre Dame Ouest, Montreal, H3C 1K3, Canada.
2 CENPARMI, Concordia University, 1455 de Maisonneuve Blvd West, Montreal,

H3G 1M8, Canada.
Emails: ayat@livia.etsmtl.ca, cheriet@gpa.etsmtl.ca, suen@cenparmi.concordia.ca

Abstract. We address the problem of optimizing kernel parameters in
Support Vector Machine modelling, especially when the number of pa-
rameters is greater than one as in polynomial kernels and KMOD, our
newly introduced kernel. The present work is an extended experimental
study of the framework proposed by Chapelle et al. for optimizing SVM
kernels using an analytic upper bound of the error. However, our opti-
mization scheme minimizes an empirical error estimate using a Quasi-
Newton technique. The method has shown to reduce the number of sup-
port vectors along the optimization process. In order to assess our con-
tribution, the approach is further used for adapting KMOD, RBF and
polynomial kernels on synthetic data and NIST digit image database.
The method has shown satisfactory results with much faster convergence
in comparison with the simple gradient descent method.

Furthermore, we also experimented two more optimization schemes based
respectively on the maximization of the margin and on the minimization
of an approximated VC dimension estimate. While both of the objective
functions are minimized, the error is not. The corresponding experimen-
tal results we carried out show this shortcoming.

1 Introduction

Any learning machine embeds hyper-parameters that may deteriorate its perfor-
mance if not well chosen. These parameters have a regularization effect on the
optimization of the objective function. For any classification task, picking the
best values for these parameters is a non trivial model selection problem that
needs either an exhaustive search over the space of hyper-parameters or opti-
mized procedures that explore only a finite subset of the possible values. The
same consideration apply to the Support Vector Machine in that kernel param-
eters and tradeoff parameter (C) are hyper-parameters that one needs to find
their optimal values. Until now, many practitioners select these parameters em-
pirically by trying a finite number of values and keeping those that provide the
least test error. Our primary interest through this work is to optimize the SVM
classifier for any kernel function used. More specifically, we seek an automatic
method for model selection that optimizes the kernel profile dependently of the

data. This allows better performance for the classifier and rigorous comparison
among different kernel results as well.

In the literature, there exist many published works that consider the problem
of hyper-parameters adaptation in Neural Networks. The concern herein is to
automatically fix those parameters involved in the training process which are
not, however, explicitly linked to the resulting decision function. Much fewer,
however, dealt with the SVM classifiers. Recently, Chapelle et al. in [13] pro-
posed a gradient descent framework for optimizing kernels by minimizing an
analytic upper bound on the generalization error. This bound equals to the ra-
tio of the data enclosing sphere radius over the separation margin value. Whereas
the computation of the margin is somewhat straightforward given the trained
model, estimating the radius of the enclosing sphere needs a quadratic opti-
mization procedure that may be difficult to proceed especially for large scale
problems handling tens of thousands of data entries and hundreds of support
vectors. This represents a serious handicap to the application of the aforemen-
tioned scheme on relatively large databases such as NIST digit image database.
One more drawback in [13], is that the gradient descent method requires several
iterations, namely hundreds, before convergence would be ensured. This is due to
the fact the gradient direction is not necessarily the best search direction for the
algorithm to reach a minimum. Clearly, a gradient descent method will throw
away a lot of time before multiple SVMs are optimized for a 10-class problem.

Instead, an alternative method that we investigate consists of optimizing
the SVM hyper-parameters by minimizing an empirical estimate of the error
through a validation set. The present work is an experimental study of the
method. In addition, we make use of a Quasi-Newton variant to adapt the hyper-
parameters for its convergence efficiency. This optimization algorithm proceeds
in two steps: computing the search direction and computing the step along this
direction. Furthermore, in order to compute the error estimate, we considered
probabilistic outputs for the SVM by fitting a two-parameter logistic function
to the classifier output [10]. This provides a posterior probability measure that
allows good estimation of the probability of error over the validation data points.
Through the use of such a function, the estimated error on the validation set is
also smoothed, so one can compute its gradient for the optimization.

The experimental results we obtained on a toy classification problem show a
faster convergence for our method. As well, we find out that the presented scheme
minimizes the number of support vectors which is a pessimistic upper bound of
the generalization error. We have compared the method to two minimization
procedures based on the maximization of the margin and on the minimization of
an estimate of the VC dimension [16,20]. The results have shown these methods
are ineffective to reduce the generalization error.

In section 2, we present the standard Support Vector Machine formulation.
Also, we introduce some of the state of the art kernels usually used for classifica-
tion. A brief recall of the properties of our previously introduced kernel–KMOD
will also be found. In section 3, a detailed description of the optimization method
is given. The posterior probability mapping algorithm is described too. Section

3.3 presents an experimental study of the method on synthetic two-class data.
In section 4, a real-life ten-class problem is considered. The strategy of learning,
optimization and classification on NIST digit images are well detailed as well.
Finally, a summary of the work is presented in section 5.

2 SVMs for classification: background

The SVM is a structural risk minimization based classifier which finds an op-
timum decision region. Let us have a data set {xi, yi}, i = 1, . . . , l, where yi ∈
{−1, 1} represents the label of an arbitrary example xi ∈ <d; d being the di-
mension of the input space. Also, let us define a linear decision surface by the
equation f(x) = w.x+b = 0. The original formulation of support vector machine
algorithm seeks a linear decision surface that maximizes the margin between pos-
itive and negative examples. This can be achieved through the minimization of
‖w‖2 which solution is

w =
l∑

i=1

αiyixi (1)

with the constraint
∑

i αiyi = 0. The parameters αi are found by maximizing
the dual objective [19,17]

LD =
∑

i

αi − 1
2

∑

i,j

αiαjyiyjxi.xj . (2)

However, in real-life classification problems, the algorithm as stated above is un-
able to achieve perfect separation between two classes especially in case of noisy
data. Cortes et al. in [6] slightly modified the model by adding an heuristic that
accounts for accepting misclassified examples while penalizing them. Mathemat-
ically, this does not imply any major modification except that αi must be upper
bounded as 0 ≤ αi ≤ C, where C is a penalization parameter also called trade-off
parameter. An infinite value for C yields a classifier that seeks a well separated
data. In another work, Boser et al. [5] added an important feature that allows
a different insight into support vector theory. In fact, they enable these models
to produce complex nonlinear boundaries in the original space. The technique
consists of projecting the data into higher order spaces of possibly infinite di-
mension through a mapping function φ. This function, however, must keep the
inner product formulation in Eq. 2 still useful. Furthermore, the explicit analyti-
cal form of functions φ must not be known. Only the expression of their pairwise
inner product k(x, y) = φ(x).φ(y) in the augmented space has to be defined.
This dot product defines a particular subset of kernels called Mercer kernels [7]
(see Table 1). The dual objective of Eq. 2 become then

LD =
∑

i

αi − 1
2

∑

i,j

αiαjyiyjk(xi, xj).

Kernels Formula

linear k(x, y) = x.y

sigmoid k(x, y) = tanh(ax.y + b)

polynomial k(x, y) = (1 + x.y)d

RBF k(x, y) = exp(−a‖x− y‖2)
exponential RBF k(x, y) = exp(−a‖x− y‖)

Table 1. Common kernels

Recently, we introduced a new two-parameter kernel namely a Kernel with
Moderate Decreasing-KMOD [2,3] whose analytic expression is

kmod(x, y) = a[exp(
γ

‖x− y‖2 + σ2
)− 1]; (3)

where a is a normalization constant equal to 1
exp(γ

σ2)−1
. The parameters γ and

σ are two positive reals that control the decreasing behavior of the kernel. In
particular, σ is a scale space parameter that defines a gate surface around zero
whereas γ controls the decreasing speed around zero. The -1 bias ensures the
kernel converges toward 0 at infinity (see Figure 1). This kernel has a particular
behavior that allows a varying speed of decay around zero and a moderate de-
crease toward infinity. We also undertook the existing duality between similarity
in feature space and spatial behavior of kernels. We show that KMOD allows
at once good discrimination between patterns while maintaining the closeness
information of far apart points from vanishing. Although empirical, some of the
experiments we perform using KMOD were encouraging (see Table 2). On the
Breast Cancer Database of UCI, for example, KMOD achieves the best results
yet established.

In order to assess KMOD as well as any SVM kernel, we undertook the
problem of automatically selecting the best kernel parameters so practitioners

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

spatial distance

co
rr

el
at

io
n

kmod
expo
rbf

900 1000 1100 1200 1300 1400 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

KMOD intersecting exp. RBF at far distance

spatial distance

co
rr

el
at

io
n

kmod
expo
rbf

〈a〉 〈b〉

Fig. 1. 〈a〉 Correlation in feature space vs. spatial distance in input space;〈b〉 KMOD
preserving the far points closeness information

classifier KMOD svm RBF svm RBF network Adaboost Adaboost Reg

error 25.4±4.4 26.0±4.7 + 27.6±4.7 + 30.4±4.7 26.5±4.5

Table 2. Performance of KMOD (column 1) versus state of the art classifiers on Breast
Cancer database [15,3]. The plus sign beside the values indicates wether or not the error
is significantly different from KMOD’s one

can compare and choose suitable kernels given different applications data. Next,
we address a systematic method for model selection in Support Vector Machines.

3 Model selection

Let us assume any kernel k depends on one or several parameters encoded into
a vector θ = (θ1, ..., θn). Support Vector Machines consider a class of functions
parameterized by α, b and θ:

fα,b,θ =
∑

i

αiyikθ(x, xi) + b, (4)

where α is the vector that contain the multipliers αi and yi represents the target
of support vector xi (multipliers of non support vectors are zero). Optimizing
the SVM hyper-parameters is a model selection problem that needs adapting
multiple parameter values at the same time. The parameters to tune are those
that embed any kernel function as the σ parameter in an RBF kernel or the
couple (γ, σ) in case of KMOD kernel (see Table 1). In addition, another pa-
rameter the optimization may consider is the trade-off parameter C which may
have a strong effect on the SVM behavior for hard classification tasks. Usually,
model selection is done by minimizing an estimate of the generalization error
or by default a known upper bound of that error. As in Neural Network area,
empirical estimation of the generalization error suggests the use of either a val-
idation error estimate which procedure requires a reduction of the amount of
data used for learning; or a leave-one-out error estimate (extreme case of K-fold
cross validation) which gives a precise estimate of the true error [4]. However,
leave-one-out error estimation is time consuming and may be avoided if enough
data could be retained for the validation set. The larger the validation set is,
tighter is the variance of the estimated error. This estimate is given by

T =
1
N

∑

i

Ψ(−yif(xi)) (5)

where Ψ is a step function (Heaviside function) and N being the size of the
validation set. Using a gradient descent approach assumes the error estimate in
Eq. 5 to be differentiable. Unfortunately the step function is not. To circumvent
this drawback it is possible to use a contracting function of the form Ψ(x) =

1
1+exp(−Ax+B) [10,13]. A very nice way to choose the values of constants A and
B is to estimate posterior probabilities [10]; whereby a smooth approximation
of the test error is obtained. Next, we describe the method.

3.1 Probability estimation: a two-parameter identification
procedure

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVM outputs

P
os

te
rio

r
P

(in
pu

t|c
la

ss
=

1)

Sigmoid fits data

〈a〉 〈b〉

Fig. 2. 〈a〉 Separation frontier; 〈b〉 Posterior probability versus SVM output value.

Recently, many researchers have considered the problem of probabilities es-
timation for SVM classifiers. The methods they proposed are of varying levels
of complexity. Sollich for example, proposed in [18] a bayesian framework to
tackle two of the outstanding challenges in SVM classification: how to obtain
predictive class probabilities rather than the conventional deterministic class la-
bel predictions and even how to tune hyper-parameters. This very attractive
method interprets Support Vector Machines as maximum a posteriori solutions
to inference problems with Gaussian process priors. Earlier, Wahba proposed in
[8] to use a logistic function of the form

P (y = 1|x) =
1

1 + exp(−f(x))

where f(x) is the SVM output (without threshold) and y = ±1 represents the
target of the data example x. Platt in [10] used a slightly modified logistic
function given by

P (y = 1|f) =
1

1 + exp(Af + B)
. (6)

The two-parameter contracting function he proposed allows to map the SVM
output values to the corresponding posteriors. The method is easy to implement
and requires a non-linear optimization of the couple of parameters (A,B) such
a way the negative log-likelihood

∑

i

ti log(pi) + (1− ti) log(1− pi)

through the validation data points is minimized; where pi = 1
1+exp(Afi+B) is

the inferred posterior probability and ti = yi+1
2 ; with ti = 1 if the input vector

xi belongs to class C1 and ti = 0 if xi belongs to class C2. For the rest of
the paper, we shall refer to yi as the bipolar target (+1,−1) and to ti as the
binary target (1, 0). The constant B in Eq. 6 allows the threshold probability
of 0.5 to correspond to a non zero value for SVM output. Using a contracting
function such in Eq. 6 allows to estimate the probability of error on the data
and circumvent the need to use the Heaviside function in Eq. 5. It follows that
the gradient of the error could now be approximated. We tried out the above
mentioned algorithm using a Newton method to adapt the sigmoid in Eq. 6 [10].
Figure 2 shows respectively the separation frontier and the inferred contracting
function for a linear SVM trained on iris3v12 data set. Below, we shall integrate
this two-parameter identification procedure into the overall optimization process.

3.2 Kernel optimization: a Quasi-Newton scheme

Different approaches for non-linear optimization have shown varying levels of
efficiency. Among these methods (gradient descent, conjugate gradient, Newton
methods, ...), Quasi-Newton approach has shown faster convergence and stable
optimization for Neural Networks. Even though a gradient descent procedure is
sufficient to find satisfactory weights values for an MLP or an RBF network,
adapting possible hyper-parameters requires an estimation of the gradient after
each training process, and then a downhill step toward a local minima could be
done [12]. This procedure is time consuming and needs many training process
before a feasible solution could be found. In fact, this algorithm has two more
drawbacks that must be pointed out. A downhill direction toward a minima is
not guaranteed and the algorithm is very sensitive to noise so any discontinuity
can lead to an arbitrary step along the error surface. The Quasi-Newton proce-
dure circumvents these disadvantages by ensuring a downhill direction of search
through the use of second order information, and computes a feasible amplitude
for the step along the search direction. Practically, it proceeds in two steps. First,
the search direction must be chosen. This step needs to approximate the corre-
sponding parameters Hessian matrix. Second, a line search minimization along
the search direction finds the best amplitude for the computed step. These two
features may speed up drastically the convergence of the optimization process.
We shall describe below the method to optimize the SVM kernels.

We can formulate the error probability of observing either target value for a
given data example xi as

Ei = P (yi 6= zi) = p1−ti
i (1− pi)ti

where zi = sign(fi), fi = f(xi) is the corresponding SVM output value
and pi is the estimated posterior probability. For a validation set of size N , the
average estimate of the error over the validation data set could be written as

E =
1
N

N∑

i=1

Ei =
1
N

N∑

i=1

p1−ti
i (1− pi)ti .

To approximate the gradient of the error we shall assume the current vector of
kernel parameter values is sufficiently close to a local minimum. As the derivative
of the error w.r.t θ at the minima vanishes, it follows that we can approximate
this gradient as

∂E

∂θ
=

∂E

∂α

∂α

∂θ
(7)

where α = (α1, ..., αk) represents the vector of multiplicative parameters and k
equals to the number of support vectors. In the other hand, the components ∂E

∂αj

could be expanded as
∂E

∂αj
=

1
N

N∑

i=1

∂Ei

∂pi

∂pi

∂fi

∂fi

∂αj
(8)

where

∂Ei

∂pi
= −p1−ti

i ti(1− pi)ti−1 + (1− ti)(1− pi)tip−ti
i =

{
+1 if ti = 0
−1 if ti = 1 (9)

The gradient of the posterior probability w.r.t. to the raw svm output is
given by

∂pi

∂fi
= −Ap2

i exp(Afi + B) (10)

and the gradient of the raw SVM output w.r.t. αj is given by

∂fi

∂αj
= yiKθ(xj , xi) (11)

where yi = ±1 is the bipolar target for the data point xi.
Once the derivative of the error w.r.t. the multipliers vector α is computed,

the next step consists of estimating the derivative of α w.r.t. hyper-parameters
θ. Notice that we may include the SVM bias b in the vector α such that α =
(α1, ..., αk, b). Moreover, it is shown that

∂α

∂θ
= −H−1 ∂H

∂θ
αT (12)

where H =
(

KY Y
Y T 0

)
and the components KY

ij = yiyjK(xi, xj) [13]. The vector

Y is the target vector corresponding to the support vectors set. Y T is its trans-
pose. H is a (]SV + 1) × (]SV + 1) matrix,]SV being the number of support
vectors. Next, we shall refer to the matrix H as the kernel’s Hessian. This matrix
is different from the Quasi-Newton related Hessian. We shall refer to the latter
as H ′.

Herein we give the optimization algorithm using a Quasi-Newton scheme:

1. Initialize θ to some value.
2. Train the SVM with fixed θ.
3. Infer the parameters A and B for the given SVM model and validation set

(non-linear optimization procedure).

4. Estimate the probability of error.
5. Calculate the gradient of that error ∂E(α,θ)

∂θ .
6. Calculate the Hessian H ′.
7. Update θ using: ∆θ = −λH ′ ∂E(α,θ)

∂θ .

where λ is the amplitude of the step along the search direction and H ′ is a n×n
matrix; n being the dimension of vector θ. The used line search minimization
algorithm is a variant of the Golden Section Search described in [14].

Besides, it is also possible to choose other criterions for the optimization
process. For example, one may consider the minimization of an analytic upper
bound of the capacity h (also called VC dimension [19]) given by

h < R2‖w‖2, (13)

where R is the radius of the smallest sphere enclosing the training data in feature
space, and ‖w‖ is determined by the support vector algorithm and is computed
in feature space (see Eq. 1). This criterion has previously been used by Scholkopf
in [16] to choose among different degrees for a polynomial kernel. Chapelle et al.
in [13] also minimized this criterion as well as the span bound using a gradient
descent method.

3.3 Experiments

The core of the used SVM solver is based on the shrinking algorithm implemented
in SV M light and detailed in [9]. To invert the kernel Hessian H in Eq. 12, we used
an LU decomposition method. This procedure has a computational complexity
of O(n3); n being the dimension of the square matrix H. In addition, some
numerical problems could be encountered if H is badly conditioned, i.e. some of
the matrix eigenvalues are very close to zero. In fact, since H is guaranteed to
be only semi-definite positive, it may happen that the Hessian is singular. One
solution consists of adding a very small constant to the diagonal elements of H.
Another way consists of using a variant of the Cholesky decomposition algorithm
adapted to semi-definite matrices [21]. This problem was mainly remarked for
spread kernels, i.e. very small values for σ in case of KMOD kernel and a in case
of RBF kernel (Table 1).

For the experiments, we first considered synthetic two-class data. So we pro-
duced 2000 data points from two overlapping spherical gaussians with known
Bayes error (0.017). Each data point has two attributes and the classes are bal-
anced. For the optimization purpose, we retain a subset of 1000 examples for
the training, 500 examples for validation and 500 examples for testing. We did
simulation using KMOD kernel with an initial vector of values for (γ, σ) equal
to (1

2.72 , 1
2.72) and an initial value for C equal to 1000 (the optimization of C

was carried out as in [13]). In order to evaluate the convergence behavior of
the empirical error minimization method, we first run the simulation using a
gradient-descent method. The estimate of the error to minimize is computed
on the validation data examples after each adaptation of the hyper-parameters.

Before, the SVM model is trained on the training data. Along the optimization
process, we recorded the estimate of the error, the margin value, the number
of support vectors and the test error. The latter is the ratio of the number of
misclassified examples over the number of whole test examples. We report in
Figure 3 the obtained plots. Figure 3 〈a〉 shows that the algorithm minimizes
the estimate of the probability of error even though some noise could be ob-
served. For example, around the iteration 60 we remark a small increase of the
error estimate. This confirms the relative sensibility of gradient descent to noisy
error surface. In fact, performing a step assumes the trained model i.e. support
vectors and multipliers αi to remain unchanged along the search direction path.
However, large gradient values through the error surface invalids this hypothesis
so a downhill descent will not be ensured. The test error plot of Figure 3 〈b〉
consolidates the adopted objective function. Notice the existing correspondence
between the objective minimums and the test error ones. Notice also the existing
noise on the test error curve. Despite this relative instability, the error is mini-
mized after 100 iterations of the optimization procedure to 0.022. In Figure 3 〈c〉
we report the variation of the number of support vectors. The curve shows that

0 20 40 60 80 100

0.2

0.25

0.3

iteration

o
b

je
ct

iv
e

fu
n

ct
io

n

0 20 40 60 80 100
0.022

0.026

0.03

0.034

iteration

te
st

 e
rr

o
r

〈a〉 〈b〉

0 20 40 60 80 100
40

80

120

160

200

iteration

S
V

 n
u

m
b

er

0 20 40 60 80 100
0.02

0.024

0.028

0.032

0.036

0.04

iteration

m
ar

g
in

〈c〉 〈d〉

Fig. 3. Optimizing hyper-parameters using a gradient descent method and KMOD
kernel: 〈a〉 Variation of the objective function; 〈b〉 Variation of the test error; 〈c〉
Variation of support vectors number; 〈d〉 Variation of the margin.

the optimization criterion reduces considerably the number of support vectors.
This number was reduced from 187 to 42 support vectors. This is a key feature
since it is known that

]SV

l
(14)

is a pessimistic bound on the true generalization error that one should minimize
to ensure good performance (where]SV is the number of support vectors and l
is the number of training data). The curve in Figure 3 〈d〉 shows the variation
of the margin along the optimization procedure. Notice the relative increase of
its values for last iterations.

We also experimented the quasi-Newton method on the same classification
task. We report in Figure 4 the corresponding plots which were obtained for an
initial C = 1000. The curves show that the algorithm is able to reduce the error
while converging in very few iterations. Indeed, the procedure converges after
only 5 iterations. The plots 〈a〉 and 〈d〉 of the same figure show that the objective
function is minimized as well as the test error after four iterations. The final
test error is 0.022. The same value achieved by the gradient descent procedure.
Notice the reduction of the support vectors number after just one iteration of the
optimization procedure (Figure 4 〈b〉). The algorithm stabilizes at approximately
40 support vectors. Figure 4 〈c〉 shows the variation of the classification error on
the validation examples. Moreover, notice that the objective to minimize never
increases during the optimization.

Besides, we chose to minimize separately two more criterions. The first one
is the VC dimension bound in which we approximate the radius square R2 with
maxi∈supportvectors(Φ(xi) − Φ(o))2. The second criterion is the margin value.
We report in Figures 5 and 6 the related variation of the objective function,
the test error and the support vectors number for both of the criterions. While
the objective functions are minimized, none of the criterions minimizes the test
error. In fact, the number of support vectors is even increased from 180 to 700
approximately, which increases dramatically Vapnik’s bound (given in Eq. 14).
One may conclude the margin maximization is not suitable for our purpose. This
is expectable since the data distribution is not takin into account through the
use of a precise estimate of the radius R of the enclosing sphere. In the other
hand, the approximation of the radius we considered does not reduce the error as
well. This lead us to the conclusion that the VC dimension approximate is a very
pessimistic upper bound of the SVM capacity h and is an ineffective criterion for
the optimization. On the other hand, the empirical estimate through a validation
data set lowers the error with an impressive reduction of support vectors number
too. The classification duration is , thus, greatly decreased.

4 Hand-written digits recognition

Support Vector Machine is a binary classifier which is useful for two-class data
only. However, k − class pattern recognition problems (where one has k ≥ 3)
such as the digit recognition task could be solved using a voting scheme method

1 2 3 4 5
0.21

0.23

0.25

0.27

0.29

iteration

o
b

je
ct

iv
e

fu
n

ct
io

n

1 2 3 4 5
40

60

180

iteration

S
V

 n
u

m
b

er

〈a〉 〈b〉

1 2 3 4 5
0.02

0.022

0.026

0.032

iteration

va
lid

at
io

n
 e

rr
o

r

1 2 3 4 5
0.022

0.024

0.028

0.03

iteration

te
st

 e
rr

o
r

〈c〉 〈d〉

Fig. 4. Optimizing hyper-parameters using a Quasi-Newton method and KMOD ker-
nel: 〈a〉 Variation of the objective function; 〈b〉 Variation of support vectors number;
〈c〉 Variation of the validation error; 〈d〉 Variation of the test error;

based on combining many binary decision functions. One possible approach is
to consider a collection of k binary classification problems. k classifiers can then
be constructed, one for each class. The ith classifier constructs a hyper-plane

0 20 40 60 80 100 120
15

20

25

30

35

40

45

50

55

60

65

iteration

||w
||

0 20 40 60 80 100 120
0.028

0.0285

0.029

0.0295

0.03

0.0305

0.031

0.0315

0.032

iteration

te
st

 e
rr

o
r

0 20 40 60 80 100 120
100

200

300

400

500

600

700

800

iteration

S
V

 n
um

be
r

〈a〉 〈b〉 〈c〉

Fig. 5. Minimizing ‖w‖ using a gradient descent method and KMOD kernel: 〈a〉 Vari-
ation of the objective function; 〈b〉 Variation of the test error; 〈c〉 Variation of support
vectors number.

between class i and the k−1 other classes. A majority vote across the classifiers
is then applied to classify a new example. Alternatively, k(k−1)

2 hyper-planes can
be constructed, separating the classes from each other and similarly an appro-
priate voting scheme could be used. Clearly, a digit recognition system using
this strategy requires building 45 different models, one for each pair of classes.
This scheme was already used to solve multi-class recognition problems with
linear decision functions as in the Ho-Kashyap classifier. It is commonly referred
to as “Pairwise strategy” in contrast to the well-known “One Against Others
strategy” [11,3]. In order to test the optimization method we used NIST digit
image database along with different kernel models, namely KMOD, RBF and
polynomial kernels. We considered only the pairwise strategy of learning. For
that, we proceed 45 training processes to build the entire pairs’ models. During
classification, an appropriate combination scheme consists of finding the class
k for which all the pairs’ models (k, j) with 0 ≤ j ≤ 9 have a positive output.
The example to classify is rejected if no class k was found. The optimization of
kernel parameters is done on each pair model as the scheme already described
(cf. §3.2). The result is that each SVM will have its own kernel parameter val-
ues. Thus, kernel profiles will vary dependently of the pair of classes to separate.
This is a strong feature that improves obviously the resulting decision frontiers.
We used a subset of 18,000 images from hsf 123 part for training, 2,000 supple-
mentary images were used for validation and 10,000 images from hsf 7 part for
testing. From each image we extract 272 features that well characterize local and
morphological shapes. Those values are presented to every SVM [1]. In order to
assess the method, we decided to start the optimization from the best kernel
parameters that we have previously obtained empirically in [3]. The duration of
training varies dependently of the used kernel, its parameter values, the trade-off
parameter C and obviously the size of data. On the average, the entire training
took about 70 hours on a SUN-ULRA-SPARC 500 MHz, 256Mo. We counted
2 to 9 iterations for the Quasi Newton to converge on each pair model. For all
experiments, we considered an initial value for C equal to 1000. Table 3 shows

0 20 40 60 80 100 120
15

20

25

30

35

40

45

50

55

60

65

iteration

O
b

je
ct

iv
e

fu
n

ct
io

n

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

iteration

te
st

 e
rr

o
r

0 20 40 60 80 100 120
100

200

300

400

500

600

700

800

iteration

S
V

 n
u

m
b

er

〈a〉 〈b〉 〈c〉

Fig. 6. Minimizing the approximated VC dimension using a gradient descent method
and KMOD kernel: 〈a〉 Variation of the objective function; 〈b〉 Variation of the test
error; 〈c〉 Variation of support vectors number

the obtained testing rates before and after optimization was done. Notice the
increase of recognition rate near 0.5% for the optimization strategy. Remark also
the considerable reduction of the support vectors number for the optimized sys-
tem, which shrinks the complexity of the model and ensures lower bound for the
generalization error. Moreover, it is worth mentioning that KMOD does slightly
better than other kernels in general. In order to assess the significance of the
results we did a z-normal test between KMOD and the performance of the other
kernels. This test does not take into account the variability throughout different
testing sets. We assume that 10,000 testing examples are sufficient to pass over
this condition. The plus sign beside the values in the table indicates whether or
not the performance is significantly different from that of KMOD. Finally, recall
that KMOD is significantly better than RBF and polynomial kernel of degree 3
(a statistical test at 0.95 confidence level was carried out).

5 Summary

In a multi-class classification problem, the distribution of the data can vary
widely from one class to another. It is thus very important to fit the inferred
decision frontiers to the classes; i.e. one must select the appropriate model for
each classification task with respect to the difficulty of separating the data. This
is particularly true for the case of SVM classifier that embeds hyper-parameters
for which optimal values must be found. We proposed an empirical error based
optimization that uses a Quasi-Newton method to adapt the parameters. We
have shown experimentally that the criterion we optimize minimizes the number
of support vectors. Moreover, the Quasi-Newton approach proved to converge
much faster than the simple gradient descent. It also prevents any divergence
of the optimization for badly conditioned Hessian matrices. We also proposed
an optimization scheme applied to a multi-class task problem. For this purpose,
we adopted a pairwise strategy of learning. On NIST database, the optimization
improves our previously obtained recognition rate by 0.5%. Finally, it would be
interesting to test the optimization method on more difficult data so one can
study and compare the behavior of different kernels.

Acknowledgments: This research was supported by the NSERC of Canada
and the FCAR program of the Ministry of Education of Quebec.

Kernel Optimized system Not optimized system
recog. rate SV recog. rate SV

KMOD 98.98 198 98.56 527

polynomial (d=4) 98.81 203 98.40 513

polynomial (d=3) + 98.25 385 + 97.88 677

RBF + 98.51 222 + 98.03 540

Table 3. Testing recognition rates and average of support vectors (per model) on NIST
database using the Quasi-Newton method

References

1. N.E. Ayat, M. Cheriet, and C.Y. Suen. Un système neuro-flou pour la recon-
naissance de montants numériques de chèques arabes. In CIFED, pages 171–180,
Lyon,France, Jul. 2000.

2. N.E. Ayat, M. Cheriet, and C.Y. Suen. Kmod- a new support vector machine
kernel for pattern recognition. application to digit image recognition. In ICDAR,
pages 1215–1219, Seattle,USA, Sept. 2001.

3. N.E. Ayat, M. Cheriet, and C.Y. Suen. Kmod-a two parameter svm kernel for
pattern recognition. to appear in icpr 2002. quebec city, canada, 2002, 2002.

4. Y. Bengio. Gradient-based optimization of hyper-parameters. Neural Computation,
12(8):1889–1900, 2000.

5. B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin clas-
sifiers. In Fifth Annual Workshop on Computational Learning Theory, Pittsburg,
1992.

6. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–
297, 1995.

7. Courant and R. Hilbert. Methods of Mathematical Physics. Interscience, 1953.
8. G.Wahba. The bias-variance trade-off and the randomized gacv. Advances in

Neural Information Processing Systems, 11(5), November 1999.
9. T. Joachims. Making large-scale svm learning practical. In B. Scholkopf, C. Burges,

and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning,
chapter 11. 1999.

10. J.Platt. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in large margin classifiers, 10(3), October
1999.

11. U. Kreβel. Pairwise classification and support vector machines. In B. Schlkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector
Learning, chapter Chap.15, pages 255–268. 1999.

12. J. Larsen, C. Svarer, L.N. Andersen, and L.K. Hansen. Adaptive regularization in
neural network modeling. In Neural Networks: Tricks of the Trade, pages 113–132,
1996.

13. O.Chapelle and V.Vapnik. Choosing multiple parameters for support vector ma-
chines. Advances in Neural Information Processing Systems, 03(5), March 2001.

14. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical
Recipes in C, the art of scientific computing. Cambridge University Press, sec-
ond edition, 1992.

15. G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for adaboost. Machine
Learning, 43(3):287–320, 2001.

16. B. Scholkopf. Support vector learning. PhD thesis, Universität Berlin, Berlin,
Germany, 1997.

17. B. Scholkopf, C. Burges, and A. Smola. Introduction to support vector learning.
In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods -
Support Vector Learning, chapter 1. 1999.

18. P. Sollich. Bayesian methods for support vector machines: Evidence and predictive
class probabilities. Machine Learning, 46(1/3):21, 2002.

19. V. Vapnik. The Nature of Statistical Learning Theory. NY, USA, 1995.
20. V. Vapnik. An overview of statistical learning theory. IEEE Transactions on

Neural Networks, 10(5), September 1999.
21. D.S. Watkins. Fundamentals of Matrix Computations. Wiley, New York, 1991.

