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In this paper we introduce a new strategy for improving a discrete HMM-based handwriting
recognition system, by integrating several information sources from specialized feature sets.
For a given system, the basic idea is to keep the most discriminative features, and to replace
the others with new ones obtained from new feature spaces. After evaluating the individual
discriminative power of each single feature, the set is divided into two subsets: one containing
the discriminative features, and the second the others. Considering feature classes in the non-
discriminative feature subset allows the specialization of new feature sets on specific
problems. The application of this strategy to an existing system showed an improvement of
16% in the recognition rate when a lexicon of 1000 city names was used.

1 Introduction

The domain of handwriting recognition belongs to the field of 2D pattern
recognition, challenged by high intra- and inter-classes variability. Thus, during the
development of a handwriting recognition system, the extraction of features from
images is very important [1], as is the integration of this information into the
system.

Researchers have been working in the field of handwriting recognition for a
few decades already, so we can find in the literature many techniques for feature
extraction, especially designed for the recognition of characters [1] or for more
general 2D patterns [2]. After this step of extraction, the recognition system must
carry out its task based solely upon the features. Thus we can consider that the
feature space is the perception that the recognition system has of a shape.

The information embedded in the features must be integrated into the
recognition system. To incorporate multiple sources of information, several options
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are possible. First, from each feature space a classifier can be built, then we will try
to combine their scores in an optimal way [3, 4]. Another strategy is to combine the
feature sets by constructing their Cartesian product, and build a new feature set [5-
7]. The drawback of this approach lies in the exponential increase in the number of
parameters.

This paper introduces a new strategy for improving the performance of a
recognition system by integrating several information sources. In the next section
we present the formalism of this new strategy. The description of its implementation
on an existing system [5], and the results obtained, are discussed in Section 3.
Finally some conclusions and plans for future work are presented.

2 A new strategy for improving a feature set

The basic idea of this new strategy comes from some observations obtained from
the evaluation of the SRTP handwriting recognition system [6]. We concluded that
word length has a strong influence on recognition performance, and thus it is easier
to recognize long words than short ones. In the case of long words the system has
more features and contextual information to perform the recognition. Moreover, the
presence of the most discriminative features is more probable in long sequences of
observation. This leads us to conclude that the individual discriminative power of
each single feature is important and should be improved in order to better recognize
short words as well as long words.

In summary, the basic idea of the new strategy is to improve a given feature set
by keeping features showing good discriminative power, and replacing the poor
ones with new features.

2.1 Evaluating the discriminative power of features

The first step is to evaluate the discriminative power of each single feature. The
conditional perplexity introduced in [7] was chosen for this purpose. This indicator
is based on the statistical notions of entropy and perplexity from information theory.
They were introduced to the field of speech recognition by Bahl [8] to evaluate the
difficulty of a specific recognition task. In this case, the entropy H is given by:

( ) ( )∑ ⋅−=
w

wpwpH log (1)

where p(w) is the a priori probability of word w, and the sum is calculated over all
the words from the vocabulary of the application.

In [7] the authors define the conditional entropy of a feature fj  by:
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where ci are the classes considered in the modeling and Nc the number of those
classes. H(fj) quantifies the capability of feature fj to discriminate between the
classes ci. This function reaches a maximum value corresponding to log Nc when:

( ) i
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ji c
N

fcp ∀=
1

| (3)

In this particular case, no information is embedded in feature fj to discriminate
between the Nc classes, and it can be considered as useless. The minimum value,
which is 0, is obtained when there exists one class ci such that:

( ) ( ) ikfcpfcp jkji ≠∀== 0|and1| (4)

The conditional perplexity PP(fj) of a feature fj is obtained from the relation:

( ) ( )jfH
jfPP 2= (5)

This function varies between 1 and Nc; thus it can be directly compared to the
number of classes ci involved. This is the advantage of using the perplexity instead
of the entropy.

The conditional perplexity quantifies the capability of each single feature to
discriminate between all classes, without the help of recognition results. To quantify
the discriminative power of a feature set, the global entropy H must be calculated:
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=
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j
jj fHfpH
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(6)

where Nf is the number of features and p(fj ) the a priori probability of the feature fj.
The global perplexity PP of a feature set is related to the global entropy H as in (5).

For a given feature set Ei, we are now able to rank it according to conditional
perplexity values. The greater the value, the less discriminative the feature. The
notation of the ordering set is (Ei, �). By determining a perplexity threshold τ, the
feature set may be divided into 2 subsets: Di, composed of the discriminative
features, and iD , the non-discriminative ones.

2.2 The descent of a perceptual level

The second step of our novel strategy is to replace the features judged non-
discriminative by some others. For this a new feature space will be used to obtain a
new characterization of the information present in the handwriting segment
previously labeled with the non-discriminative features. This phase is called the
descent of a perceptual level. As mentioned in the introduction, the features can be
considered as the perception of the shape by the recognition system; then the shift of
feature space can be considered as a change of perceptual level.

We considered two ways of carrying out this step, depending on features
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contained in iD . We must introduce here the notion of class of features: it is a
subset of features sharing some of the same basic properties. Considering the first
feature set used in [5], which is based on ascenders, descenders and loops, a class of
features can be defined as the subset of all features related to ascenders. It may also
be characterized from an associated objective value, like the conditional perplexity
[7]. In this case, a class of features is defined by a range of values from the
perplexity domain.

If there is only one class of features in subset iD  (or none), then the descent of
a perceptual level will be carried out with only one new feature set. If several
feature classes are considered, then one new feature set will be used for each class,
as in Figure 1. Each feature set Ei at the second level will be specialized considering
specific properties of feature class CEi.

τ

Descent  of a
perceptual level

Feature gathering

τ

Learning and
ranking

E1

Learning and
ranking

(S1, �) = (E1, �)

(S2, �)
D2

D1

__
D1

E2

E3

E4

__
D2

S2 = D1 ∪ E2 ∪ E3 ∪ E4

11EC 21EC 31EC

Figure 1: Synopsis of the new strategy for the improvement of feature sets

During the recognition phase, the system will extract from all graphemes a
feature from the set of the first perceptual level, E1. For each grapheme, if the
extracted feature belongs to the non-discriminative subset 1D , then another
extraction process is performed according to the specific feature class.

The next step of the process is to gather the discriminative features of the upper
level Di with the new ones, and build the new feature set Si+1. Then, a new training
of the system is carried out. The global discriminative power of the improved
feature set may be evaluated and compared with the value obtained at the previous
level. The conditional perplexity of each single feature can also be calculated, and
the feature set ranked. The entire process can then be re-iterated if necessary.
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In this process some parameters must be fixed. First, the perplexity threshold
value τ must be chosen in order to keep only the best features in Di, and the number
of perceptual levels to be considered must be determined in advance.

3 Applying the new strategy to an existing recognition system

To evaluate the pertinence of the strategy presented in the previous section, we tried
to improve the performance of the handwriting recognition system described in [5].
This is a discrete HMM-based off-line handwriting recognition system, using an
analytic approach with explicit segmentation. After some pre-processing and
segmentation steps, each grapheme is represented by two symbols, each from a
different set of features. The first set E1 (27 symbols) is based on global features:
ascenders, descenders and loops (see Table 2), and is more dedicated to cursive
handwriting. The second feature set E2 (14 symbols) is based on an analysis of the
horizontal and vertical contour transition histograms, and better characterizes
handprinting. Three databases were used in this experiment: 12023 city names for
learning, 3475 for validation, and 4674 for testing. The performance of this system,
using only E1, only E2 or the combination E1×E2, are shown in Table 1.

Table 1: Evaluation of the standard system [5]

Lexicon sizeFeature set
used

Number of
features

Global
perplexity 10 100 1000

E1 27 38.29 96.64% 88.29% 71.58%
E2 14 35.23 97.50% 91.16% 78.01%

E1×E2 378 20.72 98.69% 95.42% 86.82%

We chose to apply the process described in Section 2 to improve feature set E1,
for two reasons. First, its global discriminative power is worse than that of the
second feature set. Secondly, we noticed after training that more than 50% of the
graphemes are characterized by the same feature “-”, corresponding to the absence
of ascenders, descenders and loops.

3.1 Evaluating the discriminative power of the features

The first step is to evaluate the individual discriminative power of each feature in
E1. Practically, the evaluation of the entropies and perplexities needs the estimation
of probabilities p(ci | fj ) and p(fj ). In Markovian modeling, the number of classes ci

depends on the model architecture. In our system, where observations are emitted
along transitions, each feature related to a grapheme can be generated by either a
letter, or the first, second or third part of a letter. Consequently there are 4 distinct
classes for each character model. The use of tied state concept (from HMM theory)
to share the transition associated with the third part allows us to reduce the number
of these classes (3×68 models + 5 = 209 classes). Since the exact labeling of each
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training sample is available, the backtracking procedure of the Viterbi algorithm is
used to recover the best path in the word model, and to label each feature/grapheme
couple with its class ci in an automatic way, as explained in [7]. The probabilities
are then computed from the frequencies of occurrence. The conditional perplexity
values of E1 are partially shown in Table 2. Here features are represented by an
arbitrary code letter, and defined by the matrix of basic properties below. For
detected loops, the size is evaluated only for those located in the median zone.
Moreover, the relative position of these loops, with respect to ascenders or
descenders, is taken into account. They are sorted in order of increasing perplexity.

Table 2: Conditional perplexity values of features from E1 (s: small, L: large, x: presence, r: right, l: left)

Feature l g G … S D d b T y f B t H h -
Ascender s … L L s s L L s L s
Descender s L … s L L L
Upper loop x …

Median loop L L … L r s l s l s r s r
Lower loop X x …

Occurrence (%) 0.01 0.01 0.1 … 0.9 0.8 1.3 1.1 0.5 0.3 0.4 1.3 0.4 11.8 5.8 51.9
Perplexity 1.9 3.5 4.7 … 18.5 20.2 20.9 23 23.6 28.5 30.3 32.7 41 44.3 49.6 61.1

The big difference in perplexity between the most discriminative features and
the lesser ones confirms that some features are really discriminative and must be
preserved. We notice also that the seven less discriminative features (conditional
perplexity > 24) are the only ones with no loops. In fact, they belong to the same
feature class defined by the basic property: features without loops.

3.2 The concavity feature space

As explained above, more than 50% of the graphemes are characterized by the
feature “-” from E1. These graphemes must come from characters showing no
ascender, no descender and no loop: c, i, m, n, r, s, u, v, w, x. A visual analysis of
the data showed that parts of other characters, if the loops are broken, are also
labeled with this feature. Due to the fact that for handprinted characters, upper and
lower zones are usually non-existent, most of them are also labeled with “-”. The
analysis of concavities seems to be appropriate to our problem, so we chose it as the
new feature space for the second perceptual level.

We used the white pixel labeling technique to calculate the concavities [9]. By
analyzing graphemes in their bounding boxes, only 39 different configurations are
found. An extensive analysis is performed when close concavities are encountered:
an exit is searched by following two consecutive directions; 4 configurations are
added. The black pixel ratio is also taken into account. Finally, the size of the
concavity vectors is 44, and all components are real values in the range 0 to 1.

As our system is based on a discrete representation of the information, a vector
quantization algorithm must be used. We chose the LBG algorithm [10] for speed
and simplicity of its use.
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3.3 Descent of a perceptual level based on one class of features

In order to test the strategy described in Section 2, the feature set must be divided
into two subsets, D1 and 1D . An analysis of the feature conditional perplexity values
led us to choose 24 for the threshold τ, because there is a significant gap in the
perplexities at this point, so this is a natural place to cut. In addition, with this
threshold value, all the features contained in 1D  belong to the same class of feature:
features without loops. We must notice also that the global frequency of occurrence
of these features is really important (70%).

The concavity vector was extracted for all graphemes characterized at the first
level by one feature in the non-discriminative subset 1D  (141907 graphemes). Then
the vector quantization algorithm was applied twice, to obtain 64 and 128 centroids
and build two new feature sets. Two experiments were performed; each feature set
was used to replace the features in the non-discriminative subset 1D . Gathering
features from the new set and from D1 allows the training and testing of the new
system. The performances obtained are shown in Table 3.

Table 3: Performance obtained considering only one class of features

Lexicon sizeFeature set used Number of
features

Global
perplexity 10 100 1000

E1 27 38.29 96.64% 88.29% 71.58%
S2

1 = D1 + 64 84 21.12 98.48% 94.61% 85.28%
S2

2 = D1 + 128 148 18.08 98.72% 95.93% 86.05%

E1×E2 378 20.72 98.69% 95.42% 86.82%

These results show that our new technique confers improvement to the
discriminative power of the feature set, and significantly increases the recognition
rate (14.4% improvement for lexicon 1000) without adding too many features (i.e.
without adding too many system parameters). We conclude that the new strategy
proposed to improve the performance of a recognition system is attractive.

3.4 Descent of a perceptual level based on several classes of features

In order to test the second strategy for perceptual level descent, an analysis of the
features in the non-discriminative subsets 1D  was performed. We identified the
following classes of features:

• “-”: feature showing no ascender, no descender, and no loop,
• “hH”: features showing small or large ascender only,
• “tf”: features showing large descender and small or large ascender,
• “By”: features showing small or large descender only.

For each class, several sets of features were built by increasing the number of
centroids during vector quantization. Each new feature set was used to replace its
respective class of features. Then one system training per new feature set was
carried out. After each training, the global discriminative power of the new feature
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set was evaluated, as presented in Table 4. Only this indicator was used to estimate
the improvement of the recognition system, because the computation time is really
shorter than that needed for recognition rate evaluation, and we assume that there is
a relation between these two functions [8].

Table 4: Discriminative power of the improved feature sets

Number of added featuresFeature
class

Number of
samples

Frequency
4 8 16 32 64

“-” 77 898 51.9 % 34.07 30.28 27.42 24.41 22.30
“hH” 25 660 17.6 % 37.24 36.83 36.62 35.81
“tf” 1 644 0.8 % 38.14 38.07 38.05 37.99

“By” 2 144 1.6 % 38.12 38.06 37.99 37.86

An analysis of Table 4 shows that in all cases the global perplexity value
decreases with the injection of a new feature set, and particularly in the case of
feature “-”. This is due to its high frequency of occurrence, and also the important
intra-class shape variations of related graphemes, as we previously observed. For
these reasons we decided to give special care to this feature during the final system
performance evaluation. The influence of the number of features replacing “-” was
studied. For these experiments, each class of feature in 1D  was replaced by the
number of features marked in bold in Table 4 (i.e. 64 new features), but class “-”
was replaced by 8 to 128 features. From each case the system was trained and
tested; the results are presented in Table 5.

Table 5: Performance obtained considering several feature classes

Lexicon size
Feature set used

Number of
features

Global
perplexity 10 100 1000

E1 27 38.29 96.64% 88.29% 71.58%
S2

3 = D1 + 64 + 8 92 24.57 98.40% 93.67% 83.20%
S2

4 = D1 + 64 + 16 100 22.26 98.63% 94.76% 85.17%
S2

5 = D1 + 64 + 32 116 19.82 98.74% 95.76% 85.67%
S2

6 = D1 + 64 + 64 148 18.08 98.78% 95.61% 86.56%
S2

7 = D1 + 64 + 128 212 16.11 98.65% 95.38% 87.51%

E1×E2 378 20.72 98.69% 95.42% 86.82%

The increase in features by replacing “-” brings improvement in recognition
performance, and in feature set discriminative power. For lexicon size 1000, the
recognition rate is increased by 16%. This performance is better than the standard
system using the combination of the two feature sets E1×E2. Moreover, this is done
with 44% fewer features, and hence with fewer system parameters. The
performance at lexicon size 1000 is pointed out because the vocabulary associated
with the target application, i.e. mail sorting, usually exceed this number. If we
compare the results in Table 5 with those in Table 3, we can conclude that the
descent of a perceptual level with several feature classes is better. In the second
case, each feature set used to substitute a feature class is specialized for the solution
of a sub-problem identified by this feature class and the associated basic properties.
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3.5 Combining of the improved feature sets with E2

In order to evaluate the global improvement of our system, we combined the best
improved feature set obtained from each strategy of perceptual level descent (i.e. S2

2

and S2
7) with the handprinted feature set E2, based on the technique used previously

in [5]. Two new systems were built and tested.

Table 6: Performance obtained by combining the improved feature sets with E2

Lexicon size
Feature set used

Number of
features

Global
perplexity 10 100 1000

E1 × E2 378 20.72 98.69% 95.42% 86.82%

S2
2 × E2 2 072 10.44 98.91% 95.31% 87.44%

S2
7 × E2 2 968 9.22 98.80% 95.81% 88.68%

From the results obtained (Table 6), we can observe a small improvement (1 or
2 %), and a drastic increase in the number of features. In this case, feature set E2 is
distributed uniformly on S2

i, without any specialization on a specific sub-problem to
be solved. We conclude that this combination strategy leads to saturation of the
recognition rate, combined with a huge number of parameters to be evaluated.
Moreover, by excessively increasing the number of features, the system could fall
into an over-learning phase. For these reasons, the strategy for improving a
recognition system presented in this paper is more attractive than the feature set
combination tested here.

4 Conclusions and future works

We have introduced a new strategy for improving of a feature set in a discrete
HMM-based handwriting recognition system. The basic idea is to keep the most
discriminative features, and to replace the others by new ones specialized for a
specific sub-problem. The development of this technique needs an individual
discriminative power indicator to rank the feature set and divided it in two subsets;
we chose conditional perplexity. Then the descent of a perceptual level is carried
out depending on the number of feature classes identified in the non-discriminative
feature subset. For each class, a new feature set is built and specialized in order to
solve the specific sub-problem characterized by the properties of the class of
features. After gathering the features introduced at this level with the most
discriminative of the upper level, system training and testing can be performed. This
iterative process can be performed several times if necessary.

Some experiments were carried out in order to evaluate this new strategy. We
conclude that this technique confers a significant improvement in recognition rate,
while keeping a reasonable number of features. In our approach, the number of
parameters grows with an additive factor, in opposition to the feature set
combination used in [5], where a multiplicative factor can be observed. This reflects
a strength of the proposed technique. Moreover, at a specific perceptual level, the
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integrated feature sets may be specialized on a sub-problem identified by the classes
of features.

To be able to evaluate all the possibilities of our new strategy, we must develop
other feature extraction techniques. This may be done according to the problems to
be solved, i.e. the pattern recognition sub-problems identified at the first perceptual
level by the feature classes. We want also to define some objective criteria, in order
to choose the value of the threshold τ and to stop the iterative process automatically.
Finally, the vector quantization technique should be improved to optimize the
number of features in the different sets at each perceptual level, this will help the
system avoid over-learning.
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