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Abstract

It has been shown that Support Vector Machine theory
optimizes a smoothness functional hypothesis through ker-
nel application. We present KMOD, a two-parameter SVM
kernel with distinctive properties of good discrimination be-
tween patterns while preserving the data neighborhood in-
formation. In classi£cation problems, the experiments we
carried out on the Breast Cancer benchmark produced bet-
ter performance than RBF kernel and some state of the art
classi£ers. As well, it also generated favorable results when
subjected to a 10-class problem of recognizing handwritten
digits in the NIST database.

1 Introduction
The SVM (Support Vector Machine) is a powerful classi-

£er that provides a linear separation in an augmented space,
different from the original one, by means of some de£ned
kernels. These kernels map the data vectors into a high-
dimensional space, of possibly in£nite dimension, where
a linear separation is more likely. This process amounts
to £nding a non-linear frontier in the original input space.
The £nal decision function is as: f(x) =

∑
i αiyik(xi, x);

where xi,yi and k represent respectively a support vector,
its corresponding label and a given kernel (Table 1). The
parameters αi are the solution of the following quadratic
optimization problem to be maximized: LD =

∑
i αi −

1
2

∑
i,j αiαjyiyjk(xi, xj) and must satisfy 0 ≤ αi ≤ C

where C is a penalization parameter [7].
KMOD (kernel with moderate decreasing) has been intro-
duced in [1]. The present work is an extension of it where
we study the spectral behavior of KMOD and proceed ex-
periments on two databases. The motivation is two fold.
First, we do believe that controlling the spatial behavior of
kernels is of major interest as long as the complexity and
distribution of the data in hand vary widely from one clas-
si£cation problem to another. In particular, when the data is
sparse, it is important to capture the closeness information
of all its points through the kernel application. KMOD is a

two-parameter SVM kernel that allows such a behavior. As
well, we explain intuitively its behavior with respect to the
duality between spatial similarity in the original space and
correlation in the augmented space. This additional preci-
sion let the SVM deal better with sparse and Cauchy dis-
tributed data. Another part of the work emphasizes on the
spectral properties of KMOD and their connection with the
entropy numbers. In section 2, we present our kernel and
give an intuitive analysis of its characteristics. In section 3,
we analyze the spectral behavior of KMOD and its connec-
tion with the entropy numbers theory. As well, we make
some remarks about the generalization of the classi£er with
respect to the kernel behavior in the frequency domain. In
section 4 and 5, we give an experimental study of the clas-
si£er performance on two real-life benchmarks: a two-class
problem through UCI Breast Cancer database and a ten-
class problem through NIST digit image database. The re-
sults on both data show the relative superiority of KMOD
w.r.t alike kernels. In section 6, we summarize the work.

Kernel Formula
linear k(x, y) = x.y

sigmo΅d k(x, y) = tanh(ax.y + b)
polynomial k(x, y) = (1 + x.y)d

RBF k(x, y) = exp(−a‖x − y‖2)
exponential RBF k(x, y) = exp(−a‖x − y‖)

Table 1. Common kernels

2 KMOD: theoretical analysis

In general, the function that embeds the original space
into the augmented feature space is unknown. The exis-
tence of such a function for a given kernel is assured by
Mercer’s theorem. This kernel must express a dot product
in the feature space.

All kernels found in the literature are either dot prod-
uct based functions (k(x, y) = k(x.y)) or distance based
functions (k(x, y) = k(||x − y||)). By adopting the latter



formulation, knowing an estimation of the Euclidean dis-
tance between two points in the original space, we £nd how
much they are correlated in the augmented space. The fol-
lowing question however arises: Is the kernel spatial be-
havior of any importance? In most common distance based
kernels (e.g. RBF), points very close to each other are
strongly correlated whereas points far apart have almost un-
correlated images in the augmented space. Our £rst con-
cern is to force the image of the original points to be lin-
early separable in the augmented space. In order to possess
such a behavior, a kernel must turn points which are very
close to each other in the original space into weakly corre-
lated points (as weak as possible) while still maintaining the
closeness information from being zero. To meet this chal-
lenge, we need the following couple of features: a quick
decrease in the neighborhood of zero and a moderate de-
crease near in£nity. The RBF kernel satis£es correctly the
£rst requirement but not the second, whereas exponential
RBF (Table 1) does not satify both requirements (Figure 1).
Alternatively, we propose KMOD whose analytic expres-
sion is kmod(x, y) = a[exp( γ

‖x−y‖2+σ2 ) − 1]; where a is

a normalization constant equal to 1
exp( γ

σ2 )−1
; γ and σ are

two positive reals that control the decreasing behavior of
the kernel. In particular, σ is a scale space parameter that
de£nes a gate surface around zero whereas γ controls the
decreasing speed around zero. The −1 bias ensures KMOD
converges toward 0 at in£nity. It is worth to mention that the
second property of KMOD allows capturing more closeness
information from the data points. RBF kernel, however,
is penalizing quickly intermediate neighborhood. Figure
1〈b〉 shows that in far neighborhood RBF function reaches
a zero value. KMOD, however, is decreasing moderately
and intersecting Exponential RBF at an arbitrary point. It is
worthwhile to point out that the behavior of KMOD remains
the same, even though its pro£le changes with its parame-
ters.
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Figure 1. 〈a〉:Correlation in feature space vs. spatial
distance in input space;〈b〉:KMOD preserving the far
points closeness information
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Figure 2. Spectrum of KMOD 〈a〉: for γ = 30 and
σ = 5; 〈b〉: for γ = 190 and σ = 5

3 What about γ?

Recently, many authors have £gured out the similarity
between SVM model and regularization theory, i.e. the
maximization of the margin through the minimization of
‖w‖2 is a smoothness functional hypothesis where we refer
to smoothness as a measure of the oscillatory behavior of a
function [6]; i.e. the regularization properties of any kernel
goes along with its spectral properties. In other hand, it has
been shown that the properties of kernel spectrum can be
used to make statements about the generalization error of
the associated SVM. The connection is that a less pessimist
bound on the generalization error, called the entropy num-
bers, is bounded by the decay rate of the Gram-Schmidt ma-
trix eigenvalues [8]. As well, it is established that the decay
rate of the Gram-Schmidt matrix eigenvalues is proportional
to the decay rate of the kernel spectrum values. Thus, the
faster this decay is, the smaller the expected error is. This
space-spectral duality enables the analysis of SVM kernel
properties in the frequency domain. In order to get denu-
merable spectral values, we simulated the discrete spectrum
of KMOD by considering its periodic extension inside the
spatial domain. Depending on the value of γ, we report in
Figure 2 two different cases of the Fourier transform pro-
£les. Figure 2〈a〉 exhibits the spectral behavior of KMOD
for small values of γ. The asymptotic curve in that case
decreases exponentially i.e. the decay rate of the Gram-
Schmidt matrix eigenvalues λi is O(e−αi) for some α ≥ 0.
The nth entropy number εn is then ln ε−1

n = O(ln
1
2 n) [8].

The plot in Figure 2〈b〉 shows that for medium values of
γ, the asymptotic behavior decays as rapidly as O(e−αi2).
Hence, the bound on the entropy numbers is tighter and
the model with such parameter values is expected to have a
smaller generalization error. For large values of γ, KMOD
spectrum tends to be a gate function with a width propor-
tional to 1

σ2 . Therefore, the Fourier Transform decay rate
is slower and we expect a greater generalization error. The



optimum value for γ may then belong to an intermediate
span of values. However, the entropy numbers theory does
not allow us to make a priori statements about the choice
exact of KMOD parameters values. This is a model selec-
tion problem that need either a cross-validation procedure
or optimization of an upper bound on the error.
4 Breast cancer benchmark

In order to assess our kernel, we perform simulations on
the UCI Breast Cancer Database which is a hard classsi£ca-
tion problem. This data is a binary classi£cation problem
partitioned into 100 different realizations of training and
testing sets of respectively 200 and 77 examples each, upon
which we train the classi£er and then compute its test error.
To estimate the precision of the classi£er we perform suc-
cessive training and testing throughout the 100 realizations
and then compute the average and deviation of the general-
ization error. This protocol of assessment was already used
in [5]. Hence we can compare our results with those of [5].
During the experiment, we used 4 different values for C (cf.
§1 ) : 0.1, 1, 10, 100; 50 values for σ starting at 0.01 and 10
values for γ starting at 0.001. We report in £gure 3 〈a〉 the
variation of the error w.r.t. σ for C=1, 10 and 100. The error
for C=0.1 is constant and equal to 0.287 so we did not re-
port its curve. Except for C=100, the error decreases w.r.t. σ
until it reaches a minimum value (which is not in the scope
of the £gure 3 〈a〉). As well, C=1 gives the least generaliza-
tion error with a value of 25.4±4.4 %. A value that is better
than all published results on the Breast Cancer database [5]
and which we recall below (see Table 2). Nevertheless, it is
worth mentioning that a better value for C would be found
using some gradient descent procedures that minimize an
empirical estimate of the error. This is not the focus of the
present paper. Moreover, notice in £gure 3 〈b〉 that C=1,
gives roughly, 10 and 20 more support vectors than C=10
and C=100. Clearly, this contrasts with a pessimist bound
on the generalization error given by �sv

l in [7]; where �sv
is the support vectors number and l is the total number of
training examples. Contrary to what one would expect, the
error is smaller. In £gure 3 〈c〉, we report the variation of the
spread of the error w.r.t. σ. As well, we proceed a Student
signi£cance test at 0.05 con£dence between KMOD SVM
and other classi£ers related to the errors in the table. The
plus sign beside the values in the table indicates whether or
not the error is signi£cantly different from KMOD’s one.

5 Recognition of handwritten digits

Support Vector Machine is a binary classi£er which is
useful for a two-class data only. However, k-class pattern
recognition problems (where one has k ≥ 3 classes) such
as the digit recognition task could be solved using a voting
scheme method based on combining many binary decision
functions. One possible approach is to consider a collection
of k binary classi£cation problems. k classi£ers can then

be constructed, one for each class. The ith classi£er con-
structs a hyper-plane between the class i and the k−1 other
classes. A majority vote across the classi£ers is then applied
to classify a new example. Alternatively, k(k−1)

2 hyper-
planes can be constructed, separating the classes from each
other and similarly an appropriate voting scheme could be
used. Clearly, a digit recognition system using this strat-
egy needs building 45 different models, one for each pair
of classes. This scheme was already used to solve multi-
class recognition problems with linear decision functions as
in the Ho-Kashyap classi£er. It is commonly referred as
“Pairwise strategy” in contrast with the well-known “One
Against Others strategy”[3, 4]. We tried KMOD as well
as RBF kernel and a polynomial kernel on NIST database
using both of the learning strategies. We used a subset
of 20,000 images from the hsf 123 part for training and
10,000 images from the hsf 7 part for testing. From each
image we extract 272 features that well characterize both
local and morphological shapes present in the digit image
[1]. These values are fed to every SVM model. During
the “Pairwise strategy” of learning, 45 training processes
are run to build the whole pairs’ models. During classi£ca-
tion, we used an appropriate combination scheme that con-
sists of £nding the class k for which all the pairs’ models
(k, j) with 0 ≤ j ≤ 9 have a positive output. In the “One
Against Others strategy”, 10 different models are built, one
for each class. We use a simple combination scheme given
by Cj = Arg maxi(Oi); where Cj is the resulting class la-
bel and Oi is the ith svm output. The tested example will
belong to the class for which the corresponding model out-
put is maximal. No reject option was considered in this
strategy. We report in Table 3 the best results using both of
the learning strategies. We picked up empirically the cor-
responding kernel parameters using a £nite number of val-
ues to reduce the test error. Notice the increase of recogni-
tion rate near 1% for the “Pairwise strategy”. KMOD does
slighly better than other kernels in general. Moreover, in
order to evaluate the signi£cance of the results we did a
z-normal test between KMOD and other kernels’ recogni-
tion rates. Contrary to the Student test, this one does not
take into account the variability throughout different testing
sets. We assume that 10,000 testing examples are suf£cient
to pass over this condition. The plus sign beside the values
in the table indicates whether or not the error is signi£cantly
different from KMOD’s one. Recall that, our kernel is sig-
ni£cantly better than RBF and polynomial kernel of degree
3 at a con£dence level of 0.05.

6 Conclusion

Whilst it is always possible to assume that the data fed
into a SVM have bounded support, its sparseness inside the
original space can vary widely, depending on its distribu-
tion, the feature extraction method and the dif£culty of the
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Figure 3. 〈a〉: Mean of error vs. σ; 〈b〉: Mean of Support vectors number vs. σ; 〈c〉: Spread of error vs. σ

classi£er KMOD svm RBF svm RBF network Adaboost Adaboost Reg
error 25.4±4.4 26.0±4.7 + 27.6±4.7 + 30.4±4.7 26.5±4.5

Table 2. Performance of KMOD (column 1) vs. other classi£ers on Breast Cancer database ([5])

����������kernel
strategy

one-against-others pairwise

KMOD 97.77 98.56
polynomial (d=4) 97.42 98.40
polynomial (d=3) + 96.77 + 97.88
RBF + 96.91 + 98.03

Table 3. Recognition rates (in percentage) on NIST
database

problem on hand. We do believe that kernels preserving
the all data on closeness information while still penaliz-
ing the far neighborhood are more reliable. KMOD is a
two-parameter kernel that allows both of the characteristics
through a varying speed of decay around zero and a moder-
ate decrease toward in£nity. A spectral study of the behav-
ior of KMOD has shown that for intermediate values of γ
we expect smaller generalization error. Experiments done
on the UCI Breast Cancer database yield the best results yet
established. Furthermore, we handle a large-scale classi£-
cation problem by exploring a digit recognition task which
shows better performance for KMOD among most common
kernels. Moreover, a procedure for automatic optimization
of KMOD parameters has been devised, to ensure separa-
tion frontiers to £t the data more effectively, [2].
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