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Abstract. This paper describes a large vocabulary handwritten word

recognition system based on a syntax{directed level building algorithm

(SDLBA) that incorporates contextual information. The sequences of

observations extracted from the input images are matched against the

entries of a tree{structure lexicon where each node is represented by a

10{state character HMM. The search proceeds breadth|�rst and each

node is decoded by the SDLBA. Contextual information about writing

styles and case transitions is injected between the levels of the SDLBA.

An implementation of the SDLBA together with a 36,100{entry lexicon

is described. In terms of recognition speed, the results show that the

SDLBA together with the tree{structured lexicon outperforms a baseline

system that uses a Viterbi{at{lexicon scheme while maintaining the

same accuracy and consuming a reasonable amount of memory.

1 Introduction

O�{line recognition of handwritten words is a challenging task due to the high
variability and uncertainty of human writing. Several proposals to solve this
problem have been presented recently [1] [2] [3] [4] [5] [11]. The majority of the
state{of{art systems have some constraints during the recognition task. One of
the most common constraints is the limitation of the size of the lexicon that a
system can deal with. Open vocabulary systems, that is, systems that do not
rely on a lexicon during the recognition task are still far from reaching good
recognition rates. Furthermore, these kinds of systems generally require a post{
processing stage, where substitutions of characters can be performed in order
to convert a non{valid word to a valid one. The limitation of the size of the



lexicon is directly related to the speed and accuracy of the systems since in a
small lexicon the search space is equally small and the words are more likely
to be dissimilar to each other. Thus, an important criterion in assessing system
performance is the size of the lexicon used. The main goal of researchers has been
accuracy. Nevertheless, practical applications also require the computation to be
carried out in real{time within limited resources | CPU power and memory size
| of commonly available computers. It has been relatively little work in this
direction while preserving the accuracy of systems.

Basically, the word recognition problem can be viewed as a searching problem:
searching for the most likely sequence of characters given a sequence of observa-
tions extracted from the input image. The problem has generally been tackled
using Viterbi or Forward algorithm. Viterbi algorithm is a dynamic programming
algorithm that searches the state space for the most likely state sequence that
accounts for the input image. The state space is constructed by creating word
HMMs from its constituent character HMMs, and all word HMMs are searched
sequentially. The number of possible hypotheses grows exponentially as a func-
tion of the number of models, lexicon size and the form of linguistic constraints;
and this imposes formidable computation and storage capability requirements
for the implementation of search algorithms. The search space is huge for even
medium{size lexicon applications.

The problem of recognizing unconstrained handwritten words in a large vo-
cabulary is the focus of this paper. Along the next sections we present our ap-
proach based on a tree{structured lexicon and a syntax{directed level building
algorithm (SDLBA) to deal with large vocabularies where the accuracy must be
preserved while providing reasonable recognition speed and memory usage.

2 Language Syntax

The formal syntax of the language is described by a 36,100{word lexicon of
French city names. The lexicon de�nes all possible words and sentences. The
words range in length from 1 to 25 characters and the sentences range from 2 to
6 words. In average we have 12 characters per sentence.

There are two ways to organize the lexicon: at{structured or tree{structured.
Flat lexicons are easy to implement and integrate with an HMM recognizer.
Furthermore, such kind of lexicon provides us good results for small to medium
lexicons (10 to 1,000 words) in terms of recognition speed and considering a
10{state HMM topology. Over 1,000 words, both the recognition speed and the
accuracy start to descend and a�ect the performance of the system [3]. While for
a 10{entry lexicon we need to evaluate approximately 2 x 10 x 12 x 10 = 2,400
HMM states1 for each word, for a 10,000{entry lexicon the number of states
spreads out to 2,400,000 and the accuracy diminishes about 20%. Thus, it is
necessary to �nd an alternative scheme to deal with large lexicons.

1 Considering that the average length of the words in the lexicon is 12 characters, 10

states for uppercase, and 10 states for lowercase character models [3].



Organizing the HMMs to be searched as a character tree instead of a at
structure of independent linear character HMM sequences for each word is prob-
ably the most often cited improvement in current search techniques. This struc-
ture is referred to as tree{organized lexicon or lexical tree. If the spellings of two
or more words contain the same n initial characters, they share a single sequence
of n character HMMs. Figure 1 illustrates the generation of a lexical tree, using
some words representing city names extracted from the global lexicon.

Fig. 1. Example of a lexical tree generated from some entries taken from the global

lexicon.

3 Search Techniques

In handwritten word recognition, the search complexity of a full search algorithm
based on dynamic programming increases linearly with the size of the vocabulary
[2]. Therefore, how to manage the search complexities in a large vocabulary,
especially in real{time applications, poses a serious challenge to the researchers.

Several techniques such as breadth{�rst, depth{�rst and best{�rst search
have been employed to search and recover words from lexical trees [5] [6] [7].
Nevertheless, our problem is slightly more complex than just searching and re-
covering a word from the lexical tree. In fact, we need to traverse the whole tree



since we do not know in advance which word we are looking for because the
answer is not a single node but a set of linked nodes making up a word. We need
to recover all existing words, compute and rank their likelihoods, and select the
potential word candidates. For each tree node, it is necessary to align a sequence
of observations and compute the probability that such a node has generated the
sequence of observations. Moreover, we must retain and use the information pro-
vided by the predecessor nodes to compute the likelihoods of the current node
until all possible words of the branch are recovered. All these operations are
complex and time{consuming, and they are strongly dependent on the lexicon
size. Another problem is that our approach takes into account the writing style.
Therefore, for each node, the likelihoods of uppercase and lowercase character
HMMs must be computed.

3.1 Lexical Tree Decoding

There are several ways to transverse the lexical tree for recovering the words
and computing their likelihoods. Since we need to traverse the entire tree, that
is, we need to visit all nodes, there is no advantage in choosing one technique in
particular. Therefore, the preponderant factor is the complexity of a practical
implementation. It is worth mentioning that in the scope of this work we are not
considered any pruning of the lexical tree or HMM states.

Since our main goal is to align the sequence of observations and compute
the likelihoods once for each node, a linked list seems to be the best solution to
traverse in breadth the lexical tree and at the same time, compute and retain the
likelihoods for each observation frame without knowing a priori to which word
such node belongs [10]. Processing consists of pushing the node to the end of the
linked list, initializing it with the accumulated likelihoods at the last node of the
list, aligning the whole sequence of observations with such a node and computing
the likelihoods for all frames. The same procedure is systematically used until
all nodes are pushed into the list. In spite of using more memory than a stack
decoder, such a scheme is easier to implement and it requires less operations.
Consequently, it is faster than a stack decoder [10].

4 Syntax{Directed Level Building Algorithm (SDLBA)

Until now, we have not mentioned how to compute the likelihoods for each node.
As we have previously pointed out, for each node we need to align the sequence
of observations and compute the probability that such a node has generated the
sequence or at least part of that sequence. Two algorithms are commonly used
in this task: Viterbi [3] and Level Building algorithm [9].

Given a set of individual character models C =fc0; c1; c
0
2; : : : ; cK�1g, and a

sequence of observations O =fo0; o1; : : : ; oT�1g, recognition means decoding O

into the sequence of models C. Namely, it is to match the observation sequence
to a state sequence of models with maximum joint likelihood. In the same way



that the Viterbi algorithm matches a model to a sequence of observations, deter-
mining the maximum likelihood state sequence of the model given the sequence
of observations, the LBA is used to match an observation sequence to a num-
ber of models [9]. The LBA jointly optimizes the segmentation of the sequence
into sub{sequences produced by di�erent models, and the matching of the sub{
sequences to particular models. Since for each node we want to compute the
likelihoods of both uppercase and lowercase character HMMs, the LBA seems
to be more adequate than Viterbi.

However, it is necessary to adapt this algorithm to take into account some
particular characteristics of our character model since all characters are modeled
by a left{right{10{state{arc{basedHMM [3]. Moreover, we also take into account
some contextual information that is given by the prior knowledge about the
probability to start a word with an uppercase character (ck), a lowercase (ck)
character, or a special character or digit (c0k) and the probabilities of changing
or maintaining the same class of character along the word.

The LBA is an algorithm having no constraints, that is, any model can
follow any other model. Since the lexical tree guides the recognition process, the
algorithm needs to incorporate some constraints to handle the language syntax
provided by the lexical tree as well as the contextual information related to
the class transition probabilities [3]. Di�erent from an open vocabulary where
all character HMMs are permitted at all levels of the LBA, here, the character
HMMs that will be tested at each level, depends on the sequence of nodes of the
lexical tree. Furthermore, it will be necessary to compute the likelihoods of only
2 character models at each level of the LBA: one corresponding to the uppercase
and other corresponding to the lowercase character. On the other hand, for digits
and special characters, only one model is computed. Now, we present the LBA
considering that the observations are emitted along transitions (arc model), the
presence of null transitions, and the logarithm of the probabilities (known as
likelihoods).

1) Initialization: For l=0, t=0 and j=0 we have:

�t(l; j) = 0:0 (1)

where �t(l; j) accumulates the likelihoods for each frame t, state j, and position l
of the model in the sentence (or level of the LBA). However, the null transitions
ij� must be initialized also for l=0, t=0, and j=1,2,. . . ,N-1 as:

�t(l; j) = max
0�i<j

�
�t(l; j) + acij�(l)

�
(2)

where acij� is the probability to pass from a state i at frame t to a state j at
frame t, and producing a null observation symbol �, given that the HMM models
the character c and N is the number of states in the model.

For higher levels the initialization di�ers slightly since we must take into
account the information provided by the predecessor level (l � 1). At levels
(l > 0) we must pick up the likelihood at the most suitable observation frame
from the previous level (l�1). For l=1,2,. . . ,L-1, t=0,1,. . . ,T-1 and j=0, we have:



�t(l; j) = �t(l � 1; N � 1) (3)

where L is the number of concatenated characters that makes up a word or
a sentence. It also corresponds to the number of levels of a speci�c branch of
the lexical tree. T is the length of the observation sequence, or, the number of
observations in a sequence.

We must introduce a new back pointer array (�) to record the observa-
tion frame (t) at the previous level (l � 1) in which the character ended. For
l=1,2,. . . ,L-1, t=0 and j=0 we have:

�t(l; j) = 0 (4)

For all other observation frames (t=1,2,. . . ,T-1) we have:

�t(l; j) = t (5)

2) Recursion: For l=0, t=1,2,. . . ,T-1, j=0,1,. . . ,N-1 and considering the pres-
ence of null transitions, we have:

�t(l; j) = max

�
max
0�i<j

h
�t�1(l; i) + acijOt�1 (l)

i
; max
0�i<j

�
�t(l; i) + acij�(l)

��
(6)

where acijOt�1
is the state transition probability distribution for which aij is the

probability to pass from a state i at frame t � 1 to a state j at frame t, and
producing an observation symbol Ot�1 = vm, given that the HMM models the
character c and vm 2 V =fv0; v1; v2; : : : ; vM�1g is the discrete set of possible
observation symbols. M is the number of distinct observation symbols.

During the recursion the back pointer �t(l; j) is updated for l=0,1,. . . ,L-1
t=1,2,. . . ,T-1 and j=1,2,. . . ,N-1 as:

�t(l; j) =

8>>>>>><
>>>>>>:

�t

"
l;argmax

0�i<j

�
�t(l; i) + acij�(l)

�#
if ij is null

�t�1

"
l;argmax

0�i<j

h
�t�1(l; i) + acijOt�1 (l)

i#
otherwise

(7)

For higher levels (l > 0), �t(l; j) is also computed by equation (7). However,
�t(l; j) is computed by using equation (6) with a slight di�erence: now, only the
states greater than 0 must be considered (j=1,2,. . . ,N-1) since for j = 0, �t(l; j)
was already computed by equation (3).

3) Termination: For l=0, t=0,1,. . . ,T-1 and a given character model c 2
C =fc0; c1; c

0
2; : : : ; cK�1g, we have:

Pt(l; c) = �t(l; N � 1)

Bt(l; c) = 0
(8)



For higher levels (l=1,2,. . . ,L-1), Pt(l; c) is also computed by equation (8),
but Bt(l; c) now is given by:

Bt(l; c) = �t(l; N � 1) (9)

At the output of the level we store the result in an array P , which is a
function of the level, observation frame, and the character model. The array B

stores the backtrack pointer for each frame and level. At level l = 0 and at higher
levels (l > 0) we cycle both uppercase (ck) and lowercase (ck) characters in the
manner described above, or once if it is a special character or digit (c0k).

4) Level Reduction: At the end of each level when the special characters or
both uppercase and lowercase character models have been used, we level reduce
to form the array P �

t . For all l and t we have:

P �
t (l) = max

c
[Pt(l; c)] (10)

where P �
t is the best level output probability.

The above equation searches the model c at level l that best �ts (gives the
highest likelihood) at each observation t. The level output back pointer for each
all l and all t is given by:

B�
t (l) = Bt

h
l; argmax

c
[Pt(l; c)]

i
(11)

where B�
t is the level output back pointer.

Finally, it is also necessary to keep the output character model c for each
level (l) that gives the highest likelihood for each level and observation frame:

W �
t (l) = argmax

c
[Pt(l; c)] (12)

where W �
t is the level output character indicator.

Now, it is necessary to adapt this algorithm to take into account some con-
textual information given by the class transition probabilities.

4.1 Incorporation of Contextual Information into LBA

From the learning database it is possible to estimate the probability of a word
which starts with an uppercase character (c = ck), a lowercase character (c = ck),
or a special character (c = c0k) as well as the probability of changing or main-
taining the same class along the word. This contextual information contributes
to improve the recognition rate of the system [3]. To incorporate such knowledge
to the LBA, equation (2) must be rewritten.

For l=0, t=0,1,. . . ,T-1, and j=1,2,. . . ,N-1 we have:

�t(l; j) = max
0�i<j

�
�t(l; i) + acij�(l) + ctr(l; c; i)

�
(13)

where ctr(l; c; i) is the probability of changing or maintaining the case along the
word, and for our character model, it is de�ned as:



ctr(l; c; i) =

8>>>><
>>>>:

� (0; c(l)) if l = 0 and i = 0

� (c(l � 1); c(l)) if l > 0 and i = 0

0 otherwise

(14)

where � is the character class transition probability.
For higher levels, the initialization di�ers slightly since we must take into

account the information provided by the predecessor level (l � 1) as well as the
contextual information related to the character class transitions. Such contextual
information is incorporated in the initialization of higher levels. For l=1,2,. . . ,L-
1, t=0,1,. . . ,T-1 and j=1,2,. . . ,N-1 the null transitions (ij�), are also initialized
by equation (13).

4.2 SDLBA and Lexical Tree: A Uni�ed Structure

Having presented the lexical tree, the search technique and the SDLBA, the last
question that remains is: how to put these three elements together to recognize
a handwritten word? First of all we need to formalize the relation among char-
acters, nodes, character HMMs and levels of the LBA, even if it is evident that
each character of a word/sentence is represented by a node in the lexical tree and
each node represents a level of the LBA. Considering that a word is de�ned by
the concatenation of L characters given by W = c0c1 : : : cL�1, in the lexical tree
such a word is represented by a sequence of linked nodes N = n0n1 : : : nL�1. De-
liberately the variable L was used to represent the number of levels of the LBA,
the number of character in a word, and the depth of a branch in the lexical tree.
Figure 2 illustrates the integration among a word from the lexicon, the lexical
tree, and the LBA. The experimental results concerning such a uni�ed structure
will be presented in the next section.

4.3 Di�erences Between the SDLBA and the Baseline System

In spite of the idea that the Viterbi algorithm employed in the baseline system
[3] is a particular case of LBA for testing only one model, there are some details
that make them di�erent if we consider the injection of contextual information
between the character HMMs when making up a word HMM. The sole di�erence
is that in the LBA we have a level reduction between the levels as given by
equations (10){(12). This means that at the end of each level we take a decision
between the uppercase and lowercase models, choosing that one that gives the
best likelihood for each observation frame. As a consequence, for the subsequent
levels (l+1), only the character model (ck or ck) that gives the best likelihood at
level (l) will be considered. On the other hand, with Viterbi, the decision is taken
only after the likelihood of the last character model of the word is computed.
Therefore, in the SDLBA we have a local decision while in the Viterbi scheme
we have a global decision [8]. Moreover, the baseline system requires the double



of memory space since it keeps the likelihoods of both uppercase and lowercase
characters until the �nal decision is taken. Figure 3 shows the behavior of both
algorithms when dealing with contextual information.

Fig. 2. A simpli�ed overview of the uni�ed structure.

5 Experimental Results

The performance of the recognition scheme based on the SDLBA and lexical tree
was evaluated using the same database employed to evaluate the performance
of the baseline system. Table 1 summarizes the results for recognition accuracy
and recognition speed considering a 36,100{word global lexicon. Seven di�erent
sizes of dynamic lexicon were tested: 10, 100, 1,000, 5,000, 10,000, 20,000 and
30,000 entries.



Fig. 3. Di�erence between Viterbi algorithm and LBA.

The �rst object of our comparison is the accuracy of both systems. Table 1
compares the results of the SDLBA system with those provided by the baseline
system [3]. The baseline system and the proposed scheme di�er only in the
recognition scheme. The sole di�erence is that the baseline system uses a Viterbi
algorithm together with a at lexicon.

As we can see, the results for dynamic lexicons with 10, 100, 1,000 and 5,000
entries are approximately the same. Therefore, we can conclude that the local
decision imposed by the SDLBA when compared with the global decision of the
Viterbi, does not a�ect the global recognition accuracy.

Table 1. Recognition rates and speed for the SDLBA and baseline system (BLN).

Lexicon Recognition Rate (%) Recognition Speed

Entries TOP1 TOP5 TOP10 (w/m)

SDLBA BLN SDLBA BLN SDLBA BLN SDLBA BLN

10 98.76 99.08 99.93 99.93 100.00 100.00 218.21 208.13

100 95.46 95.74 98.82 99.01 99.40 99.44 24.34 22.54

1,000 89.00 89.37 95.48 96.21 96.81 97.45 2.80 2.28

5,000 82.26 81.38 91.10 - 93.54 - 0.66 0.47

10,000 78.22 76.31 88.49 - 90.99 - 0.36 0.24

20,000 74.54 - 85.69 - 88.94 - 0.20 0.12

30,000 71.61 - 84.02 - 87.06 - 0.15 0.09

If we compare the recognition speed of both systems, a signi�cant improve-
ment was obtained by the SDLBA system. As expected, the scheme based on the
SDLBA and lexical tree structure is faster than the scheme based on Viterbi and
at lexicon, especially for large lexicons (>1,000 entries). Finally, to complete



our analysis, Figure 4 shows the behavior of the new scheme in terms of the
reduction in the number of HMM states to be evaluated and the speed of the
system. We can verify that both curves have similar behavior with a predicted
gain in terms of speed according to the reduction of the search space.

Fig. 4. Relation between the reduction in the search space and the recognition speed

6 Conclusion and Future Work

This paper has focused on the problems related to the computational e�ciency
of a handwritten word recognition system. The foremost concern addressed in
this paper is the performance evaluation of the system considering di�erent sizes
of lexicons. We have veri�ed that for medium and large lexicons (1,000 entries
and more) such a system requires tens of seconds to recognize a handwritten
word while its accuracy is also reduced gradually. In order to translate the gains
made by the system in recognition accuracy into practical use, it is necessary to
improve the computational e�ciency. It is relatively easy to improve recognition
speed while trading away some accuracy. Nevertheless, it is much harder to
improve the recognition speed and preserve the original accuracy.

The second issue addressed in this paper is a comparison between two di�er-
ent approaches, one based on the LBA and other based on the Viterbi algorithm.
In particular, a tree{based lexicon structure combined with a breadth{�rst search
and a SDLBA have been employed successfully to optimize the search space and
increase the recognition speed while preserving the recognition accuracy. How-
ever, searching even this reduced space still requires several tens of times.

The results motivate further investigations of other mechanisms to further
reduce the search space and the computational load. Additionally, the struc-
ture of the recognition module facilitates the inclusion of contextual{dependent



models such as specialized models for the �rst characters of words, for the most
common pre�xes and su�xes, etc, as a means to improve the recognition rate.
Such ideas will be the subject of our future research.
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