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Abstract

We address the problem of optimizing kernel parame-
ters in Support Vector Machine modeling, especially when
the number of parameters is greater than one as in poly-
nomial kernels and KMOD, our newly introduced kernel.
The present work is an extended experimental study of the
framework proposed by Chapelle et al. for optimizing SVM
kernels using an analytic upper bound of the error. How-
ever, our optimization scheme minimizes an empirical error
estimate using a Quasi-Newton optimization method. To as-
sess our method, the approach is further used for adapting
KMOD, RBF and polynomial kernels on synthetic data and
NIST database. The method shows a much faster conver-
gence with satisfactory results in comparison with the sim-
ple gradient descent method.

1 Introduction

Any learning machine embeds hyper-parameters that
may deteriorate its performance if not well chosen. These
parameters have a regularization effect on the optimiza-
tion of the objective function. For any classification task,
picking the best values for these parameters is a non triv-
ial model selection problem that needs either an exhaus-
tive search over the space of hyper-parameters or optimized
procedures that explore only a finite subset of the possible
values. The same consideration apply to the Support Vec-
tor Machine in that kernel parameters and tradeoff param-
eter (C) are hyper-parameters that one needs to find their
optimal values. Until now, many practitioners select these
parameters empirically by trying a finite number of values
and keeping those that provide the least test error. Our pri-
mary interest is to optimize the SVM classifier for any ker-
nel function used. More specifically, we seek an automatic
method for model selection that optimizes the kernel profile
dependently of the data. This allows better performance for
the classifier and rigorous comparison among different ker-

nel results as well.
In the literature, there exist many published works that con-
sider the problem of hyper-parameters adaptation in Neural
Networks where the concern is to automatically fix those
parameters involved in the training process which are not,
however, explicitly linked to the resulting decision function.
Much fewer, however, dealt with the SVM classifiers. Re-
cently, Chapelle et al. in [7] proposed a gradient descent
framework for optimizing kernels by minimizing an ana-
lytic upper bound on the generalization error. This bound
equals to the ratio of the data points enclosing sphere radius
over the separation margin value. Whereas the computa-
tion of the margin is somewhat straightforward given the
trained model, estimating the radius of the enclosing sphere
needs a quadratic optimization procedure that may be diffi-
cult to proceed especially for large scale problems handling
tens of thousands of data entries. This represents a serious
handicap to the application of the aforementioned scheme
on relatively large digit image databases. Instead, an al-
ternative method that we investigate consists on optimizing
the SVM hyper-parameters by minimizing an empirical es-
timate of the error through a validation set. The present
work is an experimental study of the method. As well, one
more drawback in [7], is that the gradient descent method
needs several iterations, namely hundreds, before conver-
gence would be ensured. This is due to the fact the gradient
direction is not necessarily the best search direction for the
algorithm to reach a minimum. Clearly, this method will
throw away a lot of time before multiple SVMs are opti-
mized for a 10-class problem. In our method we make use
of a Quasi-Newton variant to adapt the hyper-parameters.
The optimization algorithm proceeds in two steps: com-
puting the search direction and computing the step along
this direction. Another part of the method consists of using
probabilistic outputs for the SVM by fitting a two-parameter
sigmoid to the unbiased output of the classifier [5]. This
provides a posterior probability that is used to estimate the
probability of error on the validation examples. Through the
use of such a sigmoid, the true error on the validation set is



smoothed, so we can compute its gradient for the optimiza-
tion. The experimental results we got on a toy classifica-
tion problem show a faster convergence for our proposed
method. As well, we find out that the presented scheme
minimizes a pessimistic bound on the generalization error.
In section 2, a detailed description of the optimization
method is given. The posterior probability mapping algo-
rithm is described as well. In section 2.3, we give an ex-
perimental study on a two-class synthetic data. In section 3,
a real-life ten-class problem is further considered through
NIST digit image database. Finally, we summarize the work
in section 4.

2 Model selection Algorithm

Let us assume any kernelK depends on one or several
parameters encoded into a vectorθ = (θ1, ..., θn). Support
Vector Machines consider a class of functions parameter-
ized byα, b andθ asfα,b,θ =

∑
i αiyiKθ(x, xi)+b; where

the parametersαi are found by maximizing a quadratic
function (maximum margin algorithm) [10] andyi repre-
sents the target of support vectorsxi. Optimizing the SVM
hyper-parameters is a model selection problem that needs
adapting multiple parameter values at the same time. The
parameters to tune are those that embed any kernel function
as theσ parameter in an RBF kernel or the couple(γ, σ) in
case of KMOD kernel (see Table 1). In addition, another
parameter the optimization may consider is the trade-off
parameterC which may have a strong effect on the SVM
behavior for hard classification tasks. Usually, model selec-
tion is done by minimizing an estimate of the generalization
error or by default a known upper bound of that error. As in
Neural Network area, empirical estimation of the general-
ization error suggests the use of either a validation error es-
timate which procedure requires a reduction of the amount
of data used for learning; or a leave-one-out error estimate
(extreme case of K-fold cross validation) which gives a pre-
cise estimate of the true error. However, leave-one-out error
estimation is time consuming and may be avoided if enough
data could be retained for the validation set. Th larger the
validation set is, the smaller is the variance of the estimated
error. This estimate is given by

Kernels Formula
linear k(x, y) = x.y
sigmoid k(x, y) = tanh(ax.y + b)
polynomial k(x, y) = (1 + x.y)d

KMOD k(x, y) = a[exp( γ
‖x−y‖2+σ2 )− 1]

RBF k(x, y) = exp(−a‖x− y‖2)
exponential RBF k(x, y) = exp(−a‖x− y‖)

Table 1. Common kernels

T =
1
N

∑

i

Ψ(−yif(xi)); (1)

whereΨ is the step function andN being the size of the
data set.

Using a gradient descent approach assumes the error es-
timate in Eq. 1 to be differentiable. Unfortunately, the
step function is not. To circumvent this drawback it is pos-
sible to use a contracting function of the formΨ(x) =

1
1+exp(−Ax+B) [5, 7]. A very nice way to choose the values
of constantsA andB is to estimate posterior probabilities
[5]; whereby a smooth approximation of the test error is
obtained. Next, we describe the method.

2.1 Probability estimation in SVM

Recently, many researchers have considered the problem
of probabilities estimation for SVM classifiers. The meth-
ods they proposed are of varying levels of complexity. Sol-
lich for example, proposed in [9] a bayesian framework to
tackle two of the outstanding challenges in SVM classifica-
tion: how to obtain predictive class probabilities rather than
the conventional deterministic class label predictions and
even how to tune hyper-parameters. This very attractive
method interprets Support Vector Machines as maximum
a posteriori solutions to inference problems with Gaussian
process priors. Earlier, Wahba proposed in [4] to use a lo-
gistic function of the formP (y = 1|x) = 1

1+exp(−f(x)) ;
where f(x) is the SVM output (without threshold) and
y = ±1 represents the target of the data examplex. Platt in
[5] used a slightly modified logistic function given by

P (y = 1|f) =
1

1 + exp(Af + B)
. (2)

The two-parameter contracting function he proposed allows
to map the SVM output values to the corresponding poste-
riors. The method is easy to implement and requires a non-
linear optimization of the couple of parameters(A,B) such
a way the negative log-likelihood

∑

i

ti log(pi) + (1− ti) log(1− pi)

through the validation data points is minimized; where
pi = 1

1+exp(Afi+B) is the inferred posterior probability and

ti = yi+1
2 is the binary target coding for the data point

(xi, yi). During the experiments, we tried out the above
mentioned algorithm using a Newton method to adapt the
sigmoid in Eq. 2. Figure 1 shows respectively the separa-
tion frontier, the distribution of the SVM output values and
the inferred contracting function for a linear SVM trained
on iris3v12 data set [3]. Below, we shall integrate this
two-parameter identification procedure into the overall op-
timization process.
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Figure 1. 〈a〉 Separation frontier; 〈b〉 Distribution of the SVM output values; 〈c〉 Posterior probability
versus SVM output.

2.2 Kernel optimization: a quasi-Newton scheme

Different approaches for non-linear optimization have
shown varying levels of efficiency. Among these methods
(gradient descent, conjugate gradient, Newton methods, ...),
Quasi-Newton approach has shown faster convergence and
stable optimization for Neural Networks. Even though a
gradient descent procedure is sufficient to find satisfactory
weights values for an MLP or an RBF network, adapting
possible hyper-parameters requires an estimation of the gra-
dient after each training process, and then a downhill step
toward a local minima could be done [6]. This procedure
is time consuming and needs many training process before
a feasible solution could be found. Furthermore, this algo-
rithm has two more drawbacks that must be pointed out. A
downhill direction toward a minima is not guaranteed and
the algorithm is very sensitive to noise. Any discontinuity
can lead to an arbitrary step along the error surface. The
Quasi-Newton procedure circumvents these disadvantages
by ensuring a downhill direction of search through the use
of second order information, and computes a feasible am-
plitude for the step along the search direction. Practically,
it proceeds in two steps. First, the search direction must be
chosen. This step needs to approximate the corresponding
parameters’ Hessian matrix. Second, a line search mini-
mization along the search direction finds the best amplitude
for the computed step. These two features may speed up
drastically the convergence of the optimization process. We
shall describe below the method to optimize the SVM ker-
nels.

Let us consider now, a target coding scheme for which
ti = 1 if the input vectorxi belongs to classC1 andti = 0
if it belongs to classC2. We can formulate the error prob-
ability of observing either target value for a given data ex-
amplexi as

Ei = P (yi 6= zi) = p1−ti
i (1− pi)ti (3)

wherezi = sign(fi), fi = f(xi) is the corresponding

SVM output value andpi is the estimated posterior proba-
bility. For a validation set of sizeN , the average estimate
of the error could be written as:

E =
1
N

N∑

i=1

Ei =
1
N

N∑

i=1

p1−ti
i (1− pi)ti (4)

To compute the gradient of the error we shall assume the
current vector of kernel parameters to optimize is near a
local minimum so the first derivative of the error w.r.tθ at
the minima vanishes. It follows that we can approximate
the gradient of the error as

∂E

∂θ
=

∂E

∂α

∂α

∂θ
(5)

whereα = (α1, ..., αk) represents the vector of multiplica-
tive parameters andk equals to the number of support vec-
tors.
The components∂E

∂αj
could be written as

∂E

∂αj
=

1
N

N∑

i=1

∂Ei

∂pi

∂pi

∂fi

∂fi

∂αj
(6)

where
∂Ei

∂pi
= −p1−ti

i ti(1− pi)ti−1 + (1− ti)(1− pi)tip−ti
i ,

∂pi

∂fi
= −Ap2

i exp(Afi + B) and ∂fi

∂αj
= yiKθ(xj , xi);

yi = ±1 being the bipolar target of examplexi. Once the
error derivative w.r.t. multipliers vectorα is computed, the
next step consists of estimating the derivative ofα w.r.t. θ.
Notice that we may include the SVM biasb in the vectorα
asα = (α1, ..., αk, b). It is shown that

∂α

∂θ
= −H−1 ∂H

∂θ
αT (7)

whereH =
(

KY Y
Y T 0

)
and the componentsKY

ij =

yiyjK(xi, xj) [7] . The vectorY is the target vector cor-
responding to the support vectors set.Y T is its transpose.



H is a (]sv + 1) × (]sv + 1) matrix, ]sv being the num-
ber of support vectors. Next, we shall refer to the matrix
H as the kernel’s Hessian. This matrix is different from the
Quasi-Newton related Hessian. We shall refer to the latter
asH ′. We give herein the optimization algorithm using a
quasi-Newton scheme:

1. Initialize θ to some value.

2. Train the SVM with fixedθ.

3. Infer the sigmoid parametersA andB (Newton opti-
mization procedure).

4. Estimate the probability of error on the validation set.

5. Calculate the gradient of that error∂E(α,θ)
∂θ .

6. Calculate the hessianH ′ over the kernel’s parameter
space .

7. Updateθ using:∆θ = −λH ′.∂E(α,θ)
∂θ .

whereλ is the amplitude of the step along the search direc-
tion andH ′ is a n × n matrix; n being the dimension of
vectorθ. The used line search minimization algorithm is a
variant of the Golden Section Search described in [8].

2.3 Experiments

For the experiments we considered first a synthetic two-
class problem. So we produced 2000 data points, from two
overlapping spherical gaussians with a known Bayes error
of 0.013. The data points have two attributes and the classes
are balanced. We retain 1000 examples for the training set,
500 examples for the validation set and 500 examples for
the testing set. We did simulation using KMOD kernel with
an initial vector of values for(γ, σ) equal to( 1

2.72 , 1
2.72 ) and

an initial value forC equal to 1000. In order to evaluate the
convergence behavior of the validation error minimization
scheme, we first run the simulation using a gradient-descent
method. We report in Figure 2 the obtained plots. Figure 2
〈a〉 shows that the algorithm efficiently minimizes the es-
timate of the probability of error even though some noise
could be observed which in time vanishes. The test error
plot of Figure 2〈b〉 consolidates our minimization princi-
ple in that objective function minima correspond to those
of the test error. Figure 2〈c〉 shows that our minimization
principle minimizes the number of support vectors. This is
a key feature cause it is also known that]sv

l is a pessimistic
bound on the true generalization error that one should mini-
mize to ensure good performance (where]sv is the number
of support vectors andl is the number of training exam-
ples). We also test the quasi-Newton scheme on the same
synthetic data. The plots of Figure 3 were obtained for an

initial C=1000. The plots show that the algorithm is capa-
ble of reducing the error while converging in few iterations.
In our case, the algorithm converges after 5 iterations. The
plots 〈a〉 and〈d〉 of Figure 3 show that the objective func-
tion is minimized as well as the test error after only four
iterations. One advantage of the presented scheme is that
the objective to minimize never increases; which is not al-
ways the case of the gradient descent procedure if the search
direction does not go downhill w.r.t. error surface.

3 Hand-written digits recognition

Support Vector Machine is a binary classifier which is
useful for two-class data only. However,k − class pat-
tern recognition problems (where one hask ≥ 3) such as
the digit recognition task could be solved using a voting
scheme method based on combining many binary decision
functions. One possible approach is to consider a collec-
tion of k binary classification problems.k classifiers can
then be constructed, one for each class. Theith classifier
constructs a hyper-plane between classi and thek−1 other
classes. A majority vote across the classifiers is then applied
to classify a new example. Alternatively,k(k−1)

2 hyper-
planes can be constructed, separating the classes from each
other and similarly an appropriate voting scheme could be
used. Clearly, a digit recognition system using this strat-
egy requires building 45 different models, one for each pair
of classes. This scheme was already used to solve multi-
class recognition problems with linear decision functions as
in the Ho-Kashyap classifier. It is commonly referred to
as “Pairwise strategy” in contrast to the well-known “One
Against Others strategy”. In order to test the optimization
method we used NIST digit image database along with dif-
ferent kernel models, namely KMOD, RBF and polynomial
kernels. We considered only the pairwise strategy of learn-
ing. For that, we proceed 45 training processes to build
the entire pairs’ models. During classification, an appropri-
ate combination scheme consists of finding the classk for
which all the pairs’ models(k, j) with 0 ≤ j ≤ 9 have
a positive output. The example to classify is rejected if
no classk was found. The optimization of kernel param-
eters is done on each pair model as the scheme already de-
scribed (cf. §2.2 ). The result is that each SVM will have
its own kernel parameter values. Thus, kernel profiles will
vary dependently of the pair of classes to separate. This is
a strong feature that improves obviously the resulting de-
cision frontiers. We used a subset of 18,000 images from
hsf 123 part for training, 2,000 supplementary images were
used for validation and 10,000 images from hsf7 part for
testing. 272 features that well characterize local and mor-
phological shapes are extracted from the images and fed to
every SVM model [1]. In order to evaluate our method we
decided to start optimization from the best kernel parame-
ters that we already obtained empirically [2]. The duration
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Figure 2. Gradient descent method: 〈a〉 Variation of objective function; 〈b〉 Variation of test error; 〈c〉
Variation of support vectors number; 〈d〉 Variation of the margin.

Kernel Optimized system Not optimized system
recog. rate SV recog. rate SV

KMOD 98.98 198 98.56 527
polynomial (d=4) 98.81 203 98.40 513
polynomial (d=3) + 98.25 385 + 97.88 677

RBF + 98.51 222 + 98.03 540

Table 2. Testing recognition rates and average of support vectors (per model) on NIST database using the Quasi-
Newton method

of training varies dependently of the used kernel, its param-
eter values, the trade-off C and obviously the size of data.
On the average, the entire training took about 70 hours on
a SUN-ULRA-SPARC 500 MHz, 256Mo. We counted 2
to 9 iterations for the Quasi Newton to converge on each
pair model. For all experiments we considered a starting
value for C equal to 1000. Table 2 shows the obtained
testing rates before and after optimization was done. No-
tice the increase of recognition rate near0.5% for the opti-
mization strategy. Remark also the reduction of the number
of support vectors for the optimized system, which shrinks
the complexity of the model and ensures lower bound for
the generalization error. Moreover, it is worth mentioning
that KMOD does slightly better than other kernels in gen-
eral. In order to assess the significance of the results we
did a z-normal test between KMOD and the performance
of the other kernels. This test does not take into account
the variability throughout different testing sets. We assume

that 10,000 testing examples are sufficient to pass over this
condition. The plus signs beside the values in the table in-
dicates whether or not the performance is significantly dif-
ferent from that of KMOD. Finally, recall that, KMOD is
significantly better than RBF and polynomial kernel of de-
gree 3 at a confidence level of95%.

4 Summary

In a multi-class classification problem, the distribution
of the data can vary widely from one class to another. It is
thus very important to fit the inferred decision frontiers to
the classes; i.e. we must select the appropriate model for
each classification task with respect to the difficulty to sep-
arate the data. This is particularly true for the case of SVM
classifier that embeds hyper-parameters for which optimal
values must be found.
We propose an empirical error based optimization that uses
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Figure 3. Quasi Newton method: 〈a〉 Variation of objective function; 〈b〉 Variation of support vectors
number; 〈c〉 Variation of validation error; 〈d〉 Variation of test error;

a Quasi-Newton method to adapt the parameters. We have
shown experimentally that the criterion we optimize mini-
mizes the number of support vectors. Moreover, the Quasi-
Newton approach proved to convergence faster than the
simple gradient descent. It also prevents any divergence of
the optimization for badly conditioned Hessian matrix. On
the NIST database, the method also improves our already
obtained performances for the classification of digit images.
A gain of0.5% was obtained.
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tants nuḿeriques de ch̀eques arabes. InCIFED, pages
171–180, Lyon,France, Jul. 2000.

[2] N.E. Ayat, M. Cheriet, and C.Y. Suen. Kmod-a two pa-
rameter svm kernel for pattern recognition. InICPR,
Quebec city, Canada., 2002.

[3] C.L. Blake and C.J. Merz. UCI repos-
itory of machine learning databases.
http://www.ics.uci.edu/∼mlearn/mlrepository.html,
1998.

[4] G.Wahba. The bias-variance trade-off and the random-
ized gacv.Advances in Neural Information Processing
Systems, 11(5), November 1999.

[5] J.Platt. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood
methods.Advances in large margin classifiers, 10(3),
October 1999.

[6] J. Larsen, C. Svarer, L.N. Andersen, and L.K. Hansen.
Adaptive regularization in neural network modeling.
In Neural Networks: Tricks of the Trade, pages 113–
132, 1996.

[7] O.Chapelle and V.Vapnik. Choosing multiple parame-
ters for support vector machines.Advances in Neural
Information Processing Systems, 03(5), March 2001.

[8] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T.
Vetterling. Numerical Recipes in C, the art of scien-
tific computing. Cambridge University Press, second
edition, 1992.

[9] P. Sollich. Bayesian methods for support vector ma-
chines: Evidence and predictive class probabilities.
Machine Learning, 46(1/3):21, 2002.

[10] V. Vapnik. The Nature of Statistical Learning Theory.
NY, USA, 1995.


