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Detection of ridges and ravines using fuzzy logic operations
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Abstract

In object analysis, line and curve finding plays a universal role, and it can be accomplished by detecting ridges and

ravines in digital gray scale images. In this paper, we present a new method of detecting ridges and ravines by using

local min and max operations. This method uses erosion and dilation properties of fuzzy logic operations and requires

no information of ridge or ravine direction, so that the method is simple and easy in comparison with the conventional

analytical methods. Experimental results from different types of images show that the proposed technique is both

effective and efficient.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Line and curve finding plays an important role

in object analysis, and this can be accomplished

through the detection of ridges or ravines in the
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gray scale images. Therefore, one crucial part of

the computer vision lies in the detection of ridge

and ravine pixels (Haralick and Shapiro, 1992;

Moon et al., 2002; Peucker and Douglas, 1975;

Johnston and Rosenfeld, 1975; Haralick and
Watson, 1981; Haralick, 1983). A digital ridge

(ravine) occurs in a digital image when there is

a simply connected sequence of pixels with

gray level intensity values that are significantly

higher (lower) than those neighboring the se-

quence, where there is a local maximum (mini-

mum) in the direction across the ridge (ravine)
ed.
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line. To determine ridges and ravines analytically

(Haralick and Shapiro, 1992; Haralick and Wat-

son, 1981; Haralick, 1983), we need to use the

neighborhood of a pixel and compute directional

derivatives, i.e., the direction across the ridge or

ravine line is obtained by computing the extremum
of the second directional derivatives, and the ridge

peak or the ravine bottom can be determined by

checking the values of the first directional deriva-

tives in the same direction. However due to the

computational complexity, this method has some

practical complications when applied to the digital

image; using the second directional derivatives for

direction of ridge or ravine requires a time-con-
suming mask operation with 10 masks to obtain

cubic surface for each pixel.

This paper presents a simple method of detect-

ing ridges and ravines in the digital image by using

fuzzy logic operations (local min and max oper-

ations). Nakagawa and Rosenfeld (1978), inspired

by fuzzy set theory, suggested the operations of

local min and max. These operations behave
analogously to erosion and dilation on gray scale

images, which form the basis for most of the

gray scale morphological operations. Therefore,

the combinations of the local min and max oper-

ations can be used to approximate various gray

scale morphological operations (Giardina and

Dougherty, 1988). Of the morphological opera-

tions, opening generally breaks narrow isthmuses
and eliminates thin protrusions, and closing, con-

versely, fuses long thin lakes and eliminates

small holes (Chen and Haralick, 1995; Nadadur

and Haralick, 2000). These properties can be

used to detect ridges and ravines in gray scale

images. In this paper, opening and closing are

implemented by combining local min and max

operations to detect ridges and ravines in gray
scale images. This method needs no information

on the direction of the ridge or ravine line, and can

easily detect ridges and ravines of various pixel

widths.
2. Definition of image by fuzzy set theory

Since a gray scale image possesses some ambi-

guity within the pixels due to the possible multi-
valued levels of brightness, it is justified to apply

the concept and logic of fuzzy set rather than or-

dinary set theory to solve image processing prob-

lem (Gupta and Knopf, 1992). Let P/ ¼ flij
/; i ¼

1; 2; . . . ; I ; j ¼ 1; 2; . . . ; Jg be the fuzzy set repre-

sentation of the pattern corresponding to an I � J ,
L-level image array, where each element lij

/ is a

fuzzy singleton that represents the degree of

membership of spatial coordinates (i; j) to the

fuzzy subset given by /. The various sets / used in

image processing generally involve notions such as

gray level, color, texture, and shape.

In this paper the brightness property of the

image is used. Therefore the given image is repre-
sented as an array of I � J fuzzy singletons, each

with a membership value equal to the normalized

gray level of the image at that point.
3. Local min and max operations

Shrinking and expanding operations on a binary
image are useful for noise removal and segmenta-

tion. In such an image consisting of 0�s and 1�s,
shrinking the 1�s is equivalent to computing the

logical AND of each pixel with its neighbors, and

expanding the 1�s is equivalent to logically ORing

each pixel with its neighbors. One limitation of

these operations is that they can be applied to

binary images only. Therefore all real (gray scale)
images have to be thresholded before they can be

processed. In trying to cope with the multi-valued

membership function, fuzzy logic has been intro-

duced to extend the Boolean concepts of AND and

OR to min and max respectively. For more general

operations which behave the same way as the

shrink/expand pair does, Nakagawa and Rosen-

feld (1978) suggested local min and local max
operations. The local min operation replaces the

membership value at each spatial location (i; j) by
the minimum membership value of itself and all

immediate neighboring pixels, and the local max

operation replaces the membership value at (i; j)
by the maximum value of itself and its neighbors.

These operations can be used to erode and dilate

the multi-valued image.
Mathematically, erosion operation for a pixel at

(i; j) is written as
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EROSIONflij
/g ¼ minR flij

/g ð1Þ

where minR is the notation for the local min

operator over the region R. The dilation operation

is mathematically given by

DILATIONflij
/g ¼ maxR flij

/g ð2Þ

where maxR is the notation for the local max

operator over the region R. Local min and max

operations belong to the neighborhood operation.

In the neighborhood operation, the output at a

given pixel position is determined by the values of

the input pixels in some neighborhood around the

given input position. A neighborhood might be
small or large. If we use a symmetric neighbor-

hood centered around the given position, the
Fig. 1. Recursive applications of local min and max operations and

connected neighborhood and iteration no. n; (b) 4-neighbor distance; (
and iteration no. n; (d) 8-neighbor distance.
neighborhood operation with a large neighbor-

hood could be achieved by performing the neigh-

borhood operation with a small neighborhood

recursively.

Fig. 1 shows the range of neighborhood which
affects the given center pixel when the local min or

max operation is performed recursively. Fig. 1(a)

is the case where a 4-connected neighborhood is

used as the region R in minR or maxR operator. If

these operators are applied n times to the image,

the resulting range of neighborhood which affects

the given center pixel is the area composed of the

pixels within the 4-neighbor distance equal to n
shown in Fig. 1(b). Similar comments hold for 8-

connected neighborhood as shown in Fig. 1(c) and

(d). Therefore, instead of using the different sizes

of neighborhood, the required erosion and dilation
its influenced range: (a) local min and max operations with 4-

c) local min and max operations with 8-connected neighborhood
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could be achieved by determining the local min

and max operations with some minimal size of

neighborhood and applying these operations

recursively to the image.
4. Detection of ridges and ravines

The local min and max operations behave

analogously to erosion and dilation on gray scale

images (Chen and Haralick, 1995; Nadadur and

Haralick, 2000; Nakagawa and Rosenfeld, 1978;

Gupta and Knopf, 1992; Goetcherian, 1980),

which form the bases for most of the morpholo-
gical operations (Haralick and Shapiro, 1992;

Gonzalez and Woods, 1992; Giardina and

Dougherty, 1988). Therefore, we can extend the

application areas of local min and max operations

by referring to the properties of several basic gray

scale morphological operations.

In gray scale morphological methods, the gray

scale dilation of image f by image (structuring
element) b, denoted f � b, is defined as

ðf � bÞðs; tÞ ¼maxff ðs� x; t� yÞ
þ bðx;yÞjðs� x; t� yÞ 2Df ; ðx;yÞ 2Dbg

ð3Þ

And, the gray scale erosion of f by b, denoted

f � b, is defined as

ðf � bÞðs; tÞ ¼minff ðsþ x; tþ yÞ
� bðx;yÞjðsþ x; tþ yÞ 2Df ; ðx;yÞ 2Dbg

ð4Þ

where Df and Db are the domains of f and b,
respectively.

Opening and closing are two other important

morphological operations for this process. The
gray scale opening of image f by b, defined f � b is

defined as

f � b ¼ ðf � bÞ � b ð5Þ
And the gray scale closing of f by b, denoted f � b,
is defined as

f � b ¼ ðf � bÞ � b ð6Þ
Generally, the effects of the gray scale opening are

to remove small bright details from an image, while
leaving the overall gray levels and larger bright

features relatively intact. The gray scale closing

tends to remove dark details from an image, while

leaving bright features relatively undisturbed.

From these properties, the gray scale opening and
closing can be used to extract image components

such as ridges and ravines, i.e., by using the com-

binations of the local min and max operations.

For an image

PG ¼ flij
G; i ¼ 1; 2; . . . ; I ; j ¼ 1; 2; . . . ; Jg

where lij
G is a membership function, which repre-

sents the brightness property of the image, the

effect of gray scale opening can be obtained by

OPENINGflij
Gg ¼ maxR minR flij

Gg
n o

ð7Þ

And the effect of gray scale closing can be obtained

by

CLOSINGflij
Gg ¼ minR maxR flij

Gg
n o

ð8Þ

where the region R in minR and maxR operators
corresponds to the structuring element in the

morphology. Then, the positions of ridge pixels in

the image can be detected by computing the dif-

ference between the original image PG and its

opened version, i.e., the ridge image PRIDGE is

obtained by

PRIDGE ¼ flij
RIDGE; i ¼ 1;2; . . . ; I ; j ¼ 1; 2; . . . ; Jg

06lij
RIDGE6 1 ð9Þ

where

lij
RIDGE ¼ 1 if lij

G �maxR minR flij
Gg

� �
> 0

0 otherwise

�

In Eq. (9), if we use a 4- or 8-connected neigh-
borhood as the region R in minR and maxR oper-

ators, ridges not exceeding 2-pixel width can be

detected. Wider ridges can be detected by extend-

ing Eq. (9) as follows:

PRIDGE n ¼ flij
RIDGE n; i¼ 1;2; . . . ; I ; j¼ 1;2; . . . ;Jg

06lij
RIDGE n61 ð10Þ

where

lij
RIDGE n ¼

1 if lij
G �max

ðnÞ
R min

ðnÞ
R flij

Gg
n o

> 0

0 otherwise

(
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where n is the number of iterations of minR and

maxR applied to the image. In Eq. (10), if we use a

4- or 8-connected neighborhood as the region R in

minR and maxR operators, ridges not exceeding

(2� n) pixel width can be detected. If we need not
only the positions but also the height information

of ridges, we can obtain them by modifying Eq.

(10) to

PRIDGE n ¼ flij
RIDGE n; i ¼ 1; 2; . . . ; I ;

j ¼ 1; 2; . . . ; Jg 06 lij
RIDGE n 6 1

ð11Þ

where

lij
RIDGE n ¼

lij
G if lij

G �max
ðnÞ
R min

ðnÞ
R flij

Gg
n o

> 0

0 otherwise

(

Similarly, the position of ravine pixels in the gray

scale image can be detected by computing the

difference between the original image PG and its

closed version, i.e., the ravine image PRAVINE is

obtained by

PRAVINE n ¼ flij
RAVINE n; i ¼ 1; 2; . . . ; I ;

j ¼ 1; 2; . . . ; Jg 06 lij
RAVINE n 6 1

ð12Þ
Fig. 2. The procedures of detecting ridges and rav
where

lij
RAVINE n ¼

1 if min
ðnÞ
R max

ðnÞ
R flij

Gg
n o

� lij
G > 0

0 otherwise

(

In Eq. (12), if we use a 4- or 8-connected neigh-
borhood as the region R in minR and maxR oper-

ators, ravines not exceeding (2� n) pixel width can

be detected. If we need not only the positions but

also the height information of ravines, we can

obtain them by modifying Eq. (12):

PRAVINE n ¼ flij
RAVINE n; i ¼ 1; 2; . . . ; I ;

j ¼ 1; 2; . . . ; Jg 06 lij
RAVINE n 6 1

ð13Þ

where

lij
RAVINE n ¼

lij
G if min

ðnÞ
R max

ðnÞ
R flij

Gg
n o

� lij
G > 0

0 otherwise

(

In this case, zero valued ravine pixels in the ori-

ginal image are removed, therefore some labeling

on them are required. Fig. 2 shows the procedures

of detecting ridges and ravines in a scan line of a

gray scale image by using Eqs. (11) and (13) with

n ¼ 1, respectively.
ines: (a) ridge detection; (b) ravine detection.
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5. Experimental results

To illustrate the power of the new ridge–ravine

detection scheme, we show its results on digital

patterns and real images. Fig. 3 presents the results
on digital patterns and their 3-D view. Fig. 3(a) is

the input pattern and Fig. 3(b) and (c) depict the

detected ridges and ravines, respectively. Fig. 3(d)

is another pattern and Fig. 3(e) and (f) show the

detected ridges and ravines, respectively. To obtain

these results, Eqs. (11) and (13) are used with

n ¼ 1.
Fig. 3. The computed ridges and ravines for the pattern images: (a)

image; (e) ridges of (d); (f) ravines of (d).
In order to verify the correctness of our

method, we compare the detected ridges and ra-

vines of the digital pattern shown in Fig. 3 with

their corresponding real ones. By overlapping each

other as shown Fig. 4, we can see that the detected

ridges and ravines are almost same as their real
ones.

The real image of an airphoto is illustrated in

Fig. 5(a). Fig. 5(b) shows the ridges alone obtained

by using Eq. (11) with n ¼ 1 and appropriate

thresholding, and Fig. 5(c) shows the ridges over-

laid on the airphoto scene.
original image; (b) ridges of (a); (c) ravines of (a); (d) original



Fig. 4. The real ridges and ravines overlaid with detected ones (a) ridges and (b) ravines.

Fig. 5. The computed ridges for the airphoto scene: (a) original image; (b) ridges of (a); (c) ridges overlaid on original image.

K.M. Kim et al. / Pattern Recognition Letters 25 (2004) 743–751 749
Lastly, we measure the processing time of the
proposed method and compare it with those of

existing methods. In experiments on 256 · 256 of

the lenna edge image, our method requires about

101 ms of CPU time to obtain ridge image on a PC

of Pentium III-900 MHz with Windows 2000

operating system. This processing time is quite

faster than that of Haralick method (1185 ms)

but somewhat slower than that of Johnston and
Rosenfeld method (16 ms). However, from the

resulting ridges shown in Fig. 6, it can be seen that

the ridge information is more clearly preserved by

our method when compared to Johnston and

Rosenfeld method.

Fig. 7(a) contains an image composed of dif-

ferent characters on different backgrounds in gray

levels. We can segment characters of different
widths from the background by using our ridge
detection method. Fig. 7(b) brings out the char-
acters obtained from Eq. (10) with n ¼ 2.
6. Conclusion

We have presented an efficient method of

detecting ridges and ravines in gray scale images

by using local min and max operations. This
method stems from the idea that, of the gray scale

morphological operations, the opening operation

tends to remove small bright details and the clos-

ing operation removes dark details from the gray

scale image. In this method, the properties of

opening and closing are implemented by combin-

ing the fuzzy logic operations (local min and max

operations). This method needs no information of
ridge or ravine direction, and has been shown to be



Fig. 7. The computed ridges for the character image: (a) ori-

ginal image; (b) ridges of (a).

Fig. 6. (a) Gray scale lenna edge image and its ridges detected by using (b) Johnston and Rosenfeld method; (c) Haralick method, and

(d) proposed method.
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capable of detecting ridges and ravines of various

pixel widths.
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