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� LIVIA, École de Technologie Sup´erieure � CENPARMI, Concordia University

1100, rue Notre Dame Ouest 1455 de Maisonneuve Blvd West

Montreal, H3C 1K3, Canada Montreal, H3G 1M8, Canada

ayat@livia.etsmtl.ca suen@cenparmi.concordia.ca

cheriet@gpa.etsmtl.ca

Abstract

A new direction in machine learning area has emerged
from Vapnik’s theory in support vectors machine and its ap-
plications on pattern recognition. In this paper, we propose
a new SVM kernel family (KMOD) with distinctive prop-
erties that allow better discrimination in the feature space.
The experiments that we carry out show its effectiveness on
synthetic and large-scale data. We found KMOD behaving
better than RBF and Exponential RBF kernels on the two-
spiral problem. In addition, a digit recognition task was
processed using the proposed kernel. The results show, at
least, comparable performances to state of the art kernels.

1. Introduction

A new direction in machine learning area emerged from
Vapnik’s theory on the Structural Risk Minimization prin-
ciple [10], [11]. As a major effect, automatic selection of
the optimal classifier capacity tailored on the given task
problem became effective. In fact, it was shown that one
could limit the generalization error if the ratio of the deci-
sion surface margin separating the classes by the diameter
of the hyper-sphere including all the data points is maxi-
mized. The greater this value, the smaller is the upper bound
on the generalization error whereby the machine prediction
power is increased [3], [9]. Learning algorithms based on
this paradigm brought the Support Vectors Machine the-
ory and its efficient applicability to pattern recognition [11],
[12]. Basically, the SV Machines operate a linear separation
in an augmented space different from the original one by
means of some defined kernels respecting Mercer’s condi-
tion [5], [10], [9]. These kernels map the input vectors into
a very high-dimensional space, possibly of infinite dimen-
sion, where linear separation is more likely. This process

amounts to do a non-linear separation in the original input
space. Hence, the complexity of the achieved boundaries
depends on the nature and the properties of the used kernel.
It is well established that the SVM classifier, may behave as
an MLP if a tangent hyperbolic kernel is used, as an RBF
network if a gaussian kernel is used or as a linear classifier
if no kernel function is plugged to the model.

In this paper, we present a new SVM kernel for pattern
recognition. Our motivation is twofold. First, we explain
intuitively its behavior with respect to the duality between
spatial similarity in the original space and the correlation
in the augmented space. Second, we carry out some ex-
perimental tests that show its effectiveness on synthetic and
real-life data. KMOD, Kernel with Moderate Decreasing,
has two parameters that allow at once, penalizing largely
the far apart input vectors, while maintaining the closeness
information from vanishing. In particular, this prevents any
information loss inside the SVM model through the kernel
application. As a result, the accuracy of the classifier is in-
creased. This additional precision would let the SVM deal
better with sparse data. In section 2, we briefly review the
related state of the art. In section 3, we yield a theoretical
analysis about KMOD properties. In section 4, we report
some experiments benchmarking our kernel. A comparison
with other kernels’ performances is made. In section 5, we
present our SVM based digit recognition system and some
of the results we got with. Finally a conclusion ends our
paper.

2. Review of SV Machine

The support vector machine is a classifier based on the
structural risk minimization which goal is to find the opti-
mum decision region. Let us have a data set�� �� ���� � �
�� � � � � � , where�� � ���� �� and�� � �� where� is a data
sample and� its label. Also, let us define a linear decision



surface by the equation:f(x)=wx+b=0. The original formu-
lation of support vector machine algorithm seeks a linear
decision surface maximizing the margin between positive
and negative examples. This may be achieved through a
minimization of���� [7]. This yields:
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where the parameters�� are the solution of the following
quadratic optimization problem to be maximized:
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The data subset examples which corresponding� � val-
ues are different of zero are called support vectors.
There are a number of methods for solving quadratic opti-
mization problems as of	�. In this work we used a spe-
cial strategy based on successive shrinking [6]. Basically,
it aims to iteratively decompose the optimization problem
on a working set of size
 for which the corresponding� �

variables are to be tuned. The remaining variables are fixed
at their current values. An optimization of the working set
sub-problem is further done until the termination criterion
is met.However, in real-life classification problems, the al-
gorithm as stated above is unable to achieve perfect separa-
tion between two classes, especially in case of noisy data.
Cortes et al. in [4] slightly modified the model by adding
a heuristic that accounts for accepting misclassified exam-
ples and penalizing them inside the model cost function in
such a way their distances from the boundaries are mini-
mized. Mathematically, this does not imply any major mod-
ification except that�� should satisfy an upper bound limit:
� � �� � � where C is a penalization parameter. An in-
finite value of C yields a model that seeks a well separated
data. Moreover, Boser et al. in [2] added an important fea-
ture that enables these machines to produce complex non-
linear boundaries inside the original space. Their technique
consists of projecting the data into higher order spaces, pos-
sibly of infinite dimension, through a mapping function�
and separating the patterns there. This function, must how-
ever, keep the inner product formulation inside the SVM
model (equation 3) useful. The kernel trick keeps the SVM
model still solvable, i.e. we do not need to know the explicit
analytical form of functions� themselves. Only the expres-
sion of their pairwise inner product
��� �� � ���������
in the augmented space must be defined [2], [9]. We report
in table 1 some of the classical SVM kernels.

Kernels Formula

Linear 
��� �� � ���

Sigmoid 
��� �� � ��	
��u.v � ��
Polynomial 
��� �� � �� � �����

RBF 
��� �� � �
������� ����
Exponential RBF 
��� �� � �
������� ���

Table 1. Common kernels.

3. Our SVM kernel: theoretical analysis and
intuitive idea

In general, the function that imbeds the original space
into the augmented feature space is unknown. The exis-
tence of such function is however assured by Mercer’s the-
orem [5]. The effect of such function is confined within the
constructed kernel, which must express a dot product in the
feature space. Moreover, all used kernels in the literature
are either dot product functions����� �� � ������� or dis-
tance functions����� �� � ���� � ����. By adopting the
latter formulation, knowing an estimation of the Euclidean
distance between two points in the original space, we find
how much they are correlated in the augmented space. The
following questions however arise: What could be the best
criterion for constructing such a kernel? Is the kernel spatial
behavior of any importance?
In most commonly distance based kernels (eg. RBF), points
very close to each other are strongly correlated whereas
points far apart have uncorrelated images in the augmented
space. Our concern is to force the images of the origi-
nal points to be linearly separable in the augmented space.
In order to get such a behavior, a kernel must turn very
close points from the original space into weakly corre-
lated elements (as weak as possible) while still maintain-
ing the closeness information from vanishing. To achieve
this tradeoff, we need the following couple of features: a
quick decrease in the neighborhood of zero and a moderate
decrease toward infinity. The RBF kernel may satisfy cor-
rectly the first requirement but not the second, whereas the
exponential RBF does not respond correctly for both of the
requirements (Figure 1). Alternatively, we propose KMOD
whose analytic expression is as:
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Where
 is a normalization constant;� and� are two
parameters controlling respectively the decreasing speed
around zero and the width of the kernel. This kernel was
derived from the author’s work [8]; where the formula was
modified such a way it ensures necessary conditions to be a
Mercer kernel.
Remark that the second property of our kernel amounts to
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Figure 1. Correlation in feature space versus
spatial distance in input space.
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Figure 2. KMOD preserving the far points
closeness information.

consider more closeness information during the SVM opti-
mization process, whereas RBF kernel is penalizing quickly
intermediate neighborhood and getting its correlation al-
most zero. Figure 2 shows that in far neighborhood, the
RBF kernel yields almost zero value. The KMOD kernel
however is decreasing moderately and intersecting the Ex-
ponential RBF function at an arbitrary point. Although the
profile of KMOD changes with its parameters, it still pre-
serves the aforementioned tradeoff.

4. Benchmarking its behavior

One typical test for pattern recognition is the two-spiral
problem which goal is to separate two highly interrelated
spirals. It is a difficult classification task that good classi-
fiers must deal with successfully. Through this benchmark,
some insight about the discrimination power and the com-

pactness of KMOD is being established. The number of
support vectors among the training data characterizes the
compactness of a SVM. We used a soft margin model for
the SVM [4]. Our objective was to test KMOD versus RBF
and exponential RBF, two popular distance based kernels.
First, we experiment on a one-point thickness spirals made
of 96 points. The parameters of the kernels have been tuned
in such a way a good separation is ensured while the number
of support vectors is minimized. We tried out the following
sets of values for� and� respectively: 0.1, 0.5, 1.0, 3.0, 5.0,
10.0, 30.0 and 0.1, 0.5, 1.0, 2.0, 3.0. We report in figure 3
the best KMOD resulting boundary1. The latter is perfectly
separating the spirals. However, surprisingly, only 76% of
the points are support vectors, even if all of them might be
potential support vectors. This is a really interesting behav-
ior that improves the compactness feature aforementioned.
RBF fails in separating the two patterns. In figure 4, we
plot its best resulting boundary. Table 2 shows the corre-
sponding margin values for KMOD, RBF and Exponential
RBF. These values would not be comparable unless we as-
sume that the given data set has unbounded support (very
sparse data). This case implies that there would be at least
one couple of points from the original space, which images
are orthogonal in the augmented space. Then, one may af-
ford enclosing hyper-spheres of a diameter equal to

�
� for

all the kernels (with the assumption that all kernels are nor-
malized to unity at zero). Thus, a comparison of the ker-
nels generalization abilities through the VC dimension up-
per bound amounts to compare the corresponding kernels’
margin values [10]. Since KMOD has the largest margin
value, it would expect the best generalization performance
(table 3).

Figure 3. Boundaries with KMOD kernel.

As a second part of our benchmark, we tested the kernels
on a noisy case of the two-spiral problem with less severe
non-linearity. A Gaussian noise was used to produce the

1The plots in this section were obtained using Svmtool at:
http://www.isis.ecs.soton.ac.uk/resources/svminfo/



Figure 4. Boundaries with RBF kernel.

Kernel KMOD RBF ERBF
Margin 0.239520 0.000002 0.039897
SV 146(76.0%) 196(96.9%) 192(100.0%)

Table 2. Results on the two-spiral problem.

spiral points. We plotted in figure 5 the solution boundaries
for KMOD.

Figure 5. Boundaries with KMOD kernel on
the noisy two-spiral problem.

In table 3, we report the best margin values for a min-
imal number of support vectors obtained with the kernels.
KMOD uses 14.6% among the training data points as sup-
port vectors. As in the first benchmark, a better generaliza-
tion, for KMOD, is expected through its margin value.

5. Recognition of handwritten digits

Support Vector Machines are binary classifiers, i.e. a
seldom model is useful for two-class data only. However,
multi-class classification problems (where one has� 	 �)

Kernel KMOD RBF ERBF
Margin 2.563173 0.001399 0.094913
SV 35(14.6%) 21(8.8%) 97(40.4%)

Table 3. Results on the noisy two-spiral prob-
lem.

such as the digit recognition task could be solved using vot-
ing scheme methods based on a combination of many bi-
nary classifiers. One possible approach to solve a�� �����

pattern recognition problem is to consider the problem as a
collection of� binary classification problems.� classifiers
can then be constructed, one for each class. The� �� classi-
fier constructs a hyper-plane between class� and the� � �
other classes. A majority vote across the classifiers is then
applied to classify a new example. Alternatively,������

�
hyper-planes can be constructed, separating each class from
each other and similarly some voting scheme applied. Our
kernel model has been tested on NIST database images. For
that purpose, we adopt the former multi-class recognition
scheme. Namely, its implementation consists of building
10 different models, one for each class (Figure 6). Each of
these models is a binary classifier that matches the specific
model class data against the other nine classes data. This
scheme was already used for solving multi-class data using
linear classifiers and is commonly named as ”one against
others strategy” [2]. We used a subset of 20,000 images
from the hsf123 part of NIST database for the training. Ten
training processes were done. For classification, we con-
sider the following simple scheme:�� � �����
�����;
where�� is the resulted class label and�� is the��� SVM
output. The current test example will belong to the class
for which the corresponding model output is maximal. No
reject option was considered in this experiment. We used
10,000 images from the hsf7 part of NIST database for
testing. Prior to classification, from each digit image is ex-
tracted a set of values that well characterizes both of lo-
cal and morphological features. Those are to be injected
into the classifiers. For that purpose, we overlaid a sixteen
zones mesh on each image. Inside each zone, 13 statistical
features and 4 structural features are extracted. Eight of the
former ones, are the freeman direction counts. The five re-
maining features capture statistics on the digit image edge
curvatures. On the other hand, the morphological features
we used are based on four kinds of regions [1]:


 A hole region to model concavities,


 an open region to model convexities,


 a mountain region,


 a valley region.



Four region counts are then computed inside each of the 16
zones grid. Both of the statistical and morphological fea-
tures are normalized by dividing their counts through the
zone’s pixels count. This yields a whole feature set of 272
values that feed every SVM model. We consider only the

Figure 6. SVM digit recognition system.

best results of them. KMOD does perform better than poly-
nomial and RBF kernels. It reaches 97.77% of recognition
rate, whereas the best RBF model has 96.91% of precision.
The polynomial SV machine however, does slightly better
with 97.42% in the case of a polynomial kernel with degree
4. A polynomial kernel with degree 3 has a precision of
96.77%. It is worth to mention that the kernel parameters
have been chosen in an empirical way in order to ensure
good classification with respect to each kernel.

6. Conclusion

Whilst it is possible to assume that the data fed into a SV
Machine have bounded support, the sparseness of the data
inside the original space can vary widely, depending on its
distribution, the feature extraction method and the difficulty
of the problem on hand. We believe that kernels preserving
the whole data closeness information while still penalizing
the far neighborhood are more reliable, especially in case of
sparse data. KMOD is a new family of SVM kernels that al-
lows such a behavior by ensuring at once a quick decreasing
around zero and a moderate decreasing toward infinity. This
tends to uncorrelate as much as possible very close points
into the augmented space.
Experiments done on the two-spiral problem show the abil-
ity of KMOD in separating the patterns whereas RBF kenel
fails. Moreover, we prove the effectiveness of KMOD in
dealing with a large-scale problem such as the digit recog-
nition task. For that, we built a digit recognition system
gathering 10 SVM classifiers. KMOD gives the best results
among polynomial and RBF kernels, which are proven to be

good SVM kernels. An automatic optimization of KMOD
parameters would let the SVM deal better with the spatial
distribution of the data. This is an ongoing work that will
be the object of future publication.
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