MATH 206 Self-Assessment ■ Duration: 1Hr 30Mins

Student Success Centre Concordia University

1. Simplify the expression below. Do not use a calculator.

a.
$$\log 5 - \log(3^3 + 10) + \log(\frac{1}{5})$$

b.
$$5\sqrt{10} - \sqrt{90} + 10\sqrt{250}$$

2. Rationalize the denominator:

$$\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}$$

3. Factor the following polynomials:

a.
$$8x^3 + 27$$

b.
$$4x^2 + 8x + 4$$

4. Solve the following equations:

a.
$$ln(4x - 7) = 3$$

b.
$$\frac{x}{x^2 - 25} + \frac{5}{x - 5} = \frac{25}{x + 5}$$

5. Solve the following inequities, express your answer using set notation or interval notation:

a.
$$\frac{2}{3} \le \frac{x-5}{2} \le \frac{4}{5}$$

b.
$$3|3x - 2| \le 27$$

- 6. Find the distance between the points (0,6) and (-2,-3). Also, show which one is closer to (0,0).
- 7. Find the domain and range of the functions (do not graph):

a.
$$f(x) = \sqrt{-2x + 10}$$

b.
$$g(x) = |x - 2| - 2$$

c.
$$h(x) = \frac{1}{\sqrt{x-1}}$$

- 8. Sketch the graph of the function $f(x) = 2\ln(x+3)$ starting from the graph of the function $g(x) = \ln x$ and using appropriate transformations.
- 9. Let $f(x) = \frac{x}{x-1}$ and $f(x) = \frac{x^2}{x+1}$, find:
 - a. *fg*
 - b. $\frac{f}{g}$
- 10. Tyrik invests \$20000, some in stocks and the rest in bonds. If he invests twice as much in stocks as he does in bonds, how much does he invest in each?
- 11. Find the inverse of the function $f(x) = \frac{x-3}{2x+5}$. Find the vertical and horizontal asymptotes of f(x).
- 12. The number N of bacteria present in a culture at time t (in hours) obeys the law of uninhabited growth

$$N(t) = 100e^{0.001t}$$

- a. Determine the number of bacteria at t = 0 hours.
- b. What is the population after 10 hours?
- c. When will the number of bacteria doubles?

NOTE (REFERENCES):

Questions in this document have been selected from a final exam at Concordia University.

ANSWER KEY:

a.	$52\sqrt{10}$		
b.	$\log\left(\frac{1}{37}\right) \ \mathbf{OR} \ -\log 37$		

2.
$$-5 - 2\sqrt{6}$$

a.	$(2x+3)(4x^2+6x+9)$
b.	$4(x+1)^2$

a.	$x = \frac{e^3 + 7}{4}$
b.	$x = \frac{-150}{19}$

a.
$$\frac{19}{3} \le x \le \frac{33}{5}$$

b. $\frac{-7}{3} \le x \le \frac{11}{3}$

6. Distance between two points = $\sqrt{85}$; Point (-2, -3) is closer to (0, 0).

a.	$Domain = [5, \infty) ;$	$Range = [5, \infty)$
b.	Domain = $(-\infty, \infty)$;	$Range = [-2, \infty)$
c.	Domain = $(1, \infty)$;	$Range = (0, \infty)$

 $y = 2 \ln(x + 3)$

9. a.
$$\frac{x^3}{x^2 - 1}$$
 b. $\frac{x + 1}{x + 1}$

10.
$$Bonds = \$6666.67$$
 ; $Stocks = \$13333.34$

11. Inverse:
$$f^{-1}(x) = \frac{-3-5x}{2x-1}$$
; $VA: x = -\frac{5}{2}$; $HA: y = \frac{1}{2}$

12. a.
$$N(0) = 100 \ bacteria$$

b. $N(10) = 101.005 \ bacteria$
c. At $t = 693.15 \ hours$