MATH 205 Self-Assessment ■ Duration: 1Hr 30Mins

Student Success Centre Concordia University

1. Given the following function:

$$y = \begin{cases} \sqrt{4 - x^2} + 1, & -2 \le x < 0 \\ |3x - 3|, & 0 \le x \le 3 \end{cases}$$

- a. Sketch the graph of y on the interval [-2,3].
- b. Deduce the definite integral $\int_{-2}^{3} y \, dx$ in terms of signed area (do not antidifferentiate).
- 2. Consider the following function and its Riemann sum, with partitioning of the interval [0,4] into n-subintervals of equal length:

$$f(x) = x^2 - 2x - 1$$
 and $R_n = \sum_{k=0}^n \left[\left(\frac{4}{n} k \right)^2 - 2 \left(\frac{4}{n} k \right) - 1 \right] \frac{4}{n}$ respectively.

- a. Calculate the area under y with the use of R_n .
- b. Calculate the area under y by integrating over [0,4].
- 3. Assume that:

$$H(x) = \int_2^x \frac{t}{t + \sin t} \, dt$$

Is H(x) increasing or decreasing at $x = 2\pi$?

- 4. Find the following indefinite integrals:
 - a. $\int x \arcsin(x^2) dx$
 - b. $\int \sin^3 x \, dx$
- c. $\int \frac{x^2}{\sqrt{9-x^2}} dx$
d. $\int \frac{5x}{x^2 + 3x 4} dx$
 - e. $\int \frac{e^x}{e^{2x}+1} dx$

5. Find the limit of sequence a_n at $n \to \infty$ or prove that it does not exist.

a.
$$a_n = \sqrt{n+1} - \sqrt{n}$$

b.
$$a_n = \frac{(2n+1)(3n+4)}{\sqrt{100+15n^2+4n^4}}$$

6. Determine whether the series is divergent or convergent, and if convergent, then absolutely or conditionally:

a.
$$\sum_{n=1}^{\infty} \frac{e^n}{3^{n+1}}$$

b.
$$\sum_{n=2}^{\infty} \frac{\sin n}{n^2}$$

7. Find the interval and the radius of convergence of the following series:

a.
$$\sum_{n=0}^{\infty} \frac{1}{3^{2n}} (6x+3)^n$$

b.
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} (x-2)^n$$

8. Determine the Taylor Series of $f(x) = e^{-6x}$ at a = -6.

NOTE (REFERENCES):

Some questions in this document have been selected from final exams and midterms at Concordia University.

ANSWER KEY:

1.

2.

3. H(x) is increasing, since $H'(2\pi) = 1$ which is positive.

4.	a.	$ans = \frac{1}{2}x^2 \arcsin(x^2) + \frac{1}{2}\sqrt{1 - x^4} + C$
	b.	$ans = -\cos x + \frac{\cos^3 x}{3} + C$
	c.	$ans = \frac{9}{2} \left(\arcsin\left(\frac{x}{3}\right) - \frac{1}{2} \sin\left(2\arcsin\left(\frac{x}{3}\right)\right) \right) + C$
	d.	$ans = \ln x - 1 + 4\ln x - 4 + C$
	e.	$ans = \arctan(e^x) + C$

5.	a.	0
	b.	3

6.	a.	Converges absolutely – by Ratio Test
	b.	Converges absolutely – by Absolute Convergence Test

7.	a.	interval: $-2 < x < 1$ radius: $3/2$
	b.	interval: $-\infty < x < \infty$ radius: ∞

8.
$$f(x) = e^{36} - 6e^{36}(x+6) + 18e^{36}(x+6)^2 + \cdots \quad \mathbf{OR} \quad f(x) = \sum_{n=0}^{\infty} \frac{e^{36}(-6)^n}{n!} (x+6)^n$$