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Abstract
Based on nonequilibrium Green’s function method, we investigate spin-polarized transport properties of a side-gated double 
quantum dot (DQD) system in the Coulomb blockade regime under a magnetic field and an electric or thermal bias. The 
charge and spin currents oscillate frequently and can change sign upon varying gate voltage V

G
 if the electric bias is spin–

dependent. Under a thermal bias, besides the charge- and spin-current oscillations with V
G

 , a pure spin current appears at 
the electron–hole symmetry point. Importantly, its sign can be controlled by the magnetic field above a “critical” strength. 
In addition, the charge- and spin-Seebeck coefficients oscillate nontrivially depending on V

G
 , B , and the tunnel coupling. 

Finally, we also study the spin-polarized transport properties of the DQD system effects under simultaneously applying an 
electric and a thermal bias.

Keywords Double quantum dots · Electric and thermal bias · Charge and spin currents · Coulomb blockade · Charge- and 
spin-Seebeck coefficients

Introduction

A quantum dot (QD) is a man-made sub-micron structure, 
which consists of  103–109 atoms and a comparable num-
ber of electrons. Its optical and electrical properties depend 
strongly on its size. When two QDs are joined into complex 
assemblies many opportunities are created for scientific dis-
coveries (Alivisatos 1996; van der Wiel et al. 2002). As a 
result, QD systems have been widely investigated for many 
years (Beenakker et al. 1991; Baltin et al. 1999; Torres et al. 

2003). The Kondo effect has been studied in both directly 
and indirectly coupled QDs (Sergueev et al. 2002; Jiang et al. 
2005; Georges and Meir1999; Büsser et al. 2000; Izumida 
and Sakai 2000; Aono and Eto 2001; Dong and Lei 2002; 
Aguado and Langreth 2000; López et al. 2002; Jeong et al. 
2001; Chen et al. 2004; Zhang et al. 2005; Craig et al. 2004; 
Vavilov and Glazman 2005; Simon et al. 2005). QD molecu-
lar junctions have been predicted to exhibit strong thermal 
power due to the breakdown of the Wiedemann–Franz law 
and limited thermal conductance. It has been demonstrated 
that they exhibit a larger Seebeck effect due to the violation 
of the Wiedemann–Franz law and the weak phonon contri-
bution to the thermal conductance (Yang et al. 2014; Liu 
et al. 2010, 2011; Hong et al. 2013; Zianni 2007; Liu and 
Yang 2010; Gómez-Silva et al. 2012). Besides, it has been 
found that Coulomb interaction might enhance the thermoe-
lectric effect in QDs (Liu et al. 2010). Sun et al. coupled dif-
ferent types of spin batteries to the same QD to generate spin 
currents and found that dipolar batteries give results that 
are similar to yet different from those of unipolar devices 
(Wang et al. 2004). Hong et al. (2013) and Yang and Liu 
(2013) generated pure spin currents in a double QD (DQD) 
system by applying a thermal gradient to it in the presence 
(Hong et al. 2013) or absence (Yang and Liu 2013) of the 
intradot Coulomb interaction. Their results though are very 
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limited with respect to the side-gated voltage VG (Yang and 
Liu 2013) and an applied magnetic field B . Accordingly, 
they missed the currents’ oscillatory structure versus VG and 
the fact that the pure spin current does not change sign above 
a tunnel-coupling-dependent threshold value of B . In addi-
tion, they have not evaluated the charge- and spin-Seebeck 
coefficients and have not considered the case of an electric 
and thermal bias applied simultaneously to the DQD.

In this work we couple a battery, or a spin-battery, and 
an electrical and/or thermal bias to a side-gated, by a poten-
tial VG , DQD in the Coulomb blockade regime. We present 
extensive results for the charge and spin currents as functions 
of VG , magnetic field, and tunnel coupling. In particular, we 
find that spin and charge currents can change sign under an 
electric bias and a pure spin current under a thermal bias. 
The latter changes sign above a tunnel-coupling-dependent 
threshold value of the magnetic field B.

We organize the paper as follows. In section “Model” 
we briefly describe the DQD system and introduce the non-
equilibrium Green’s function and some related formulas. 
In section “Results and discussion” we present numerical 
results for a DQD system subject to an electric or thermal 
bias and evaluate the corresponding charge- and spin-See-
beck coefficients. We also present results for the case of 
an electric and thermal bias applied simultaneously to the 
DQD. A summary follows in section “Summary”.

Model

The system of the lead-DQD-lead in Fig. 1 can be described 
by Hamiltonian.

where n̂�� = d̂
†

��
d̂�� and � = L,R represents the left and right 

leads or dots. ĉ†
�k�

(̂c�k�) and d̂†
��
(d̂��) are the creation (anni-

hilation) operators for electrons in the � electrode and QD, 
respectively, with spin index � = +1 ( ↑ ) or −1 ( ↓ ). Further, 
�̄�𝛽k is the electronic energy, as a function of the wave vector 
k in electrode � and ��� the single-particle energy at the dots, 
which is spin degenerate in the absence of a magnetic field 
B . When such a field B is applied to the DQD device, we 
have ��� = �� − ��B∕2 with �B = 2�BB the Zeeman splitting 
energy. A side-gate voltage VG shifts ��� and we set 
�L = �R = VG . The charging energy due to the intradot Cou-
lomb interaction is Ec . The factors t�k and tc are the tunnel 
couplings and h.c. denotes the Hermitian conjugate term.

(1)

�H =
∑

𝛽,k,𝜎

�̄�𝛽k�c
†

𝛽k𝜎
�c𝛽k𝜎 +

∑

𝛽,k,𝜎

t𝛽k(
�d†
𝛽𝜎
�c𝛽k𝜎 + h.c.)

+
∑

𝛽,𝜎

𝜀𝛽𝜎�d
†

𝛽𝜎
�d𝛽𝜎 +

Ec

2

∑

𝛽,𝜎

�n𝛽𝜎�n𝛽𝜎 +
∑

𝜎

tc(
�d†
L𝜎
�dR𝜎 + h.c.),

We use the Green’s function method to take into account 
the quantum coherence which can be neglected only in the 
limit of weak contact coupling between the dots and the 
electrodes (Beenakker et al. 1991; Baltin et al. 1999; Torres 
et al. 2003). In terms of the nonequilibrium Green’s function 
the electron spin-dependent current I� is given by

where  f��(�) = 1∕{exp[(� − ���)∕kBT�] + 1} i s  t he 
Fermi–Dirac distribution of electrons in the � lead, ��� 
the chemical potential, and T� the temperature. The trans-
mission��(�) is given by ��(�) = Tr

[
ΓLG

rΓRG
a
]

�
 , Gr(Ga) 

is the retarded (advanced) Green’s function of the DQD, 
and Γ𝛽 = 2𝜋

∑
k �t𝛽k�

2𝛿(𝜀 − �̄�𝛽k) the linewidth function. The 
Green’s functions of the whole system are obtained from the 
Dyson equation in the Keldysh formalism:

where gr is the retarded Green’s function of the isolated 
DQD system without coupling to the leads and Σr , Σ< are 
the self-energies. gr is obtained by the equation-of-motion 
technique. Besides, the Hartree–Fock approximation is 
used for the higher-order Green’s functions. It is reasonable 
when the temperature of the system is higher than the Kondo 
temperature (Haug and Jauho 2007). With �1 = � − ��� and 
𝜀2 = 𝜀 − 𝜀𝛽𝜎,𝛽 = R for � = L , 𝛽 = L for � = R , we have

(2)I� = (1∕2�) ∫ d� [fL�(�) − fR�(�)] ��(�),

(3)
Gr(𝜀) = gr(𝜀) + gr(𝜀)ΣrGr(𝜀), G<(𝜀) = Gr(𝜀)Σ<(𝜀)Ga(𝜀),

(4)
gr
𝛽𝛽
(𝜀) =

𝜀2(𝜀2 − Ec)[𝜀1 − Ec(1 − ⟨n𝛽�̄�⟩)]

D(𝜀)
,

gr
𝛽𝛽
(𝜀) =

tc[𝜀1 − Ec(1 − ⟨n𝛽�̄�⟩)][𝜀2 − Ec(1 − ⟨n𝛽�̄�⟩)]

D(𝜀)
,

Fig. 1  A side-gated DQD coupled to a left (L) and a right (R) lead. 
The corresponding chemical potentials and temperatures are �L , �R , 
and TL , TR , respectively. Ec is each dot’s charging energy and tc the 
interdot tunnel coupling
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where

T h e  e l e c t ro n  o c c u p a t i o n  n u m b e r  ⟨n��⟩ =

∫ d𝜀 ImG
<
𝛽𝜎
(𝜀)∕2𝜋 in the � QD for spin � and its opposite 

�̄� can be calculated self-consistently.
In the linear response regime of a small voltage bias 

ΔV�and a small temperature difference ΔT  between the 
electrodes we expand Δf = fL − fR in a Taylor series and 
obtain I� = G0K0�(�� , T)ΔV� + G0K1�(�� , T)ΔT∕eT with 
G0 = e2

/
h the conductance unit. The corresponding charge 

( Sc ) and spin ( Ss ) Seebeck coefficients, for an open circuit 
I� = 0 , are given by Sc = (S↑ + S↓)∕2 and Ss = (S↑ − S↓)∕2 , 
respectively, with

Kv�(�� , T) = − ∫ d�[�f (�,�� , T)
/
��](� − ��)

v��(�)  , 
and v = 0, 1 . At low temperatures the Mott formula 
S� ≈ −(�2k2

B
T
/
3e) ���(��)

/
��(��) applies and can be used 

to obtain analytical results in simple cases.

(5)

D(𝜀) = 𝜀1𝜀2(𝜀1 − Ec) (𝜀2 − Ec) − t2
c
[𝜀1 − Ec (1 − ⟨n𝛽�̄�⟩)]

[𝜀2 − Ec (1 − ⟨n𝛽�̄�⟩)]

(6)Σr =
i

2

(
−ΓL 0

0 −ΓR

)

, Σ<
𝜎
= i

(
ΓLfL𝜎 0

0 ΓRfR𝜎

)

(7)S� = − lim
ΔT→0

ΔV�

ΔT
= −

1

eT

K1�(�� , T)

K0�(�� , T)
,

Results and discussion

In the numerical calculations, we measure all energies in 
units of Γ ≡ 0.1 eV and use the energy-independent or wide-
band approximation ΓL = ΓR = Γ = constant. The intradot 
Coulomb interaction energy is set to Ec=20Γ . The total 
charge and spin currents are evaluated by Ic = I↑ + I↓ and 
IS = I↑ − I↓ , respectively.

Sign change of spin or charge current 
under an electric or spin bias

In this subsection we fix the temperature kBTL = kBTR = 
0.1 Γ and first consider the case in which the DQD is coupled 
to a spin-independent normal battery with �L↑ = �L↓ = Γ 
and �R↑ = �R↓ = −Γ.

The system is similar to two independent one-state sin-
gle-dots for weak tc . In Fig. 2a we plot the average occu-
pation number ⟨n��⟩ versus the gate voltage VG for weak 
inter-dot coupling tc = 0.1Γ and a magnetic field B such 
that �B=3 Γ . There appear two sets of single-dot curves 
separated by the electric bias Δ� = �L − �R = 2 Γ . The two 
dots are almost independent of each other. Their occupa-
tions depend on the Fermi energy and the temperature of 
the electrodes. The energy states in dot � read approximately 
E
�

��
=�� − ��B∕2 + �Ec , with�� = VG , for � = 0, 1 due to 

the Coulomb blockade. A state gets occupied for E𝜂

𝛽𝜎
< 𝜇𝛽 

or VG < 𝜎𝜀B∕2 − 𝜂Ec + 𝜇𝛽 ; otherwise it is unoccupied. 

Fig. 2  Occupation number 
⟨n��⟩ versus VG at �B = 3 Γ for 
a tc = 0.1 Γ and d tc = 5 Γ . 
⟨n��⟩ versus �B is shown in b 
for VG= − 10 Γ and tc = 0.1 Γ . 
c Energy levels of each dot, 
measured from VG , for weak 
tc = 0.1 Γ in the four possible 
spin-occupation (up, down) 
configurations. The dashed (dot-
dashed) curve shows the chemi-
cal potentials of the left (right) 
electrode. kBTL = kBTR = 0.1Γ , 
�L = Γ , and �R = −Γ are 
assumed
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There are four possible energy levels, i.e. E0
�↑

− VG = −1.5 , 
E0
�↓

− VG = 1.5 , E1
�↑

− VG = 18.5 , and E1
�↓

− VG = 21.5 in 
each dot. The occupation configuration of spin (up, down) 
determines their levels as illustrated in Fig. 2c. The mag-
netic field breaks the spin symmetry and enhances greatly 
the occupation number of spin-up electrons in the dots. This 
Zeeman effect is sensitive when the chemical potential is 
near the levels E�

��
 , corresponding to VG ≈ −Ec = −20 or 

VG ≈ 0 , but less sensitive when VG ≈ −Ec∕2 = −10 . As a 
result, when the Zeeman energy �B=3 Γ is small as indicated 
in Fig. 2a, the configuration (1, 0) dominates with ⟨n�↑⟩ ≈ 1 
and ⟨n�↓⟩ ≈ 0 showing strong spin polarization near 
VG = −20 or 0 but the configurations (0, 1) and (1, 0) appear 
with almost equal probabilities with ⟨n�↑⟩ ≈ ⟨n�↓⟩ ≈ 0.5 
showing negligible spin polarization at VG = −10 . The spin 
polarization becomes significant even at VG = −10 when the 
Zeeman energy is comparable to the Coulomb interaction, 
i.e. �B ⩾ 10 Γ , and the probabilities of (0, 1) and (1, 0) differ 
greatly at finite temperature as shown in Fig. 2b.

For large tc = 5Γ in Fig. 2d, the system becomes similar 
to a single dot with two states. The difference of ⟨n��⟩ in the 
two QDs (in the same QD), with the same (opposite) spin 
direction, vanishes (weakens). Each peak or step in the ⟨n��⟩
-versus-VG curve splits due to the split of the energy levels 
in the system.

In Fig. 3a we plot the charge and spin currents as func-
tions of VG in the presence of a magnetic field with �B=3 Γ 
for tc = 5 Γ . As shown, both currents exhibit an oscillatory 
structure for large negative and small positive values of 

VG and attain considerable values away from a “plateau” 
region in the range −15 Γ ⩽ VG ⩽ −5 Γ . This spin current 
though changes its sign upon varying VG . All these changes 
can be understood in terms of the up and down currents 
plotted in panels (b) and (c) for different tc . Further confir-
mation comes from panel (d) in which the spin-up energy 
levels are shown as functions of VG for tc = 5 Γ . The dark 
bar denotes the transport window in which the electrons 
contribute to the current due to the chemical potential dif-
ference between the leads and the thermal energy. Their 
intersections with the energy levels correspond to the olive-
colored peaks shown in panel (b). The numerical result 
indicates that the effective energy states in the system are 
approximately E��

��
=�� − ��B∕2 + �Ec + �C��tc for � = ±1 

due to the inter-dot coupling. The inter-dot splitting is spin 
dependent in the presence of a magnetic field, C�� = C1 , for 
(−1)�� = 1 , and C�� = C−1 for (−1)�� = −1 . In Fig. 3 we 
have C1 = C−1 = (0.04 × |

|VG + 12.6|| + 0.204).
Due to the spin polarization effect presented in Fig. 2a for 

weak tc and small �B , the spin-up (down) current is then sup-
pressed at VG ≈ −Ec = −20 ( VG ≈ 0 ) as shown in Fig. 3b, c 
(Wang et al. 2004). However, the inter-dot coupling makes 
the double-dot system qualitatively different from the one-
state, single-dot case: tc splits the two peaks of current for 
both spins and recovers partially the spin symmetry. Then, 
with reference to Fig. 3a we can see that the spin current will 
change its sign when VG is changed by a small amount. This 
occurs because tc modifies ⟨n��⟩ as shown in Fig. 2d. Though 
not shown, similar observations of sign change apply to the 

Fig. 3  a Charge current Ic ver-
sus VG for tc = 5 Γ . b, c Spin-up 
and spin-down currents, respec-
tively, versus VG for different 
tunnel couplings. d Shows the 
dot energy levels versus VG and 
the horizontal dark bar denotes 
the transport window. The 
other parameters are �B = 3 Γ , 
kBTL = kBTR = 0.1 Γ , and 
�L = Γ = −�R
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charge current in a DQD coupled to a symmetric dipolar spin 
battery with �L↑ = �R↓ = 1 and�L↓ = �R↑ = −1.

Pure spin current generated by a thermal bias

We set �L↑ = �L↓ = �R↑ = �R↓ = 0 , kBTL = Γ , kBTR = 0.5 Γ . 
For �B = 18 Γ and tc = 5 Γ in Fig. 4a we plot the total charge 
and spin currents and in Fig. 4b the spin-up and spin-down 
currents. The electron–hole symmetry point is at VG = −10 Γ 
(Hong et al. 2013). Due to the Coulomb blockade effect, the 

states and transmission spectra for spin-up electrons are the 
mirror images of those for spin-down electrons with respect 
to the energy �m = VG + EC∕2 , i.e. T↑(�m − E) = T↓(�m + E) . 
On the other hand, the Fermi distribution difference 
Δf (�) = fL(�, TL) − fR(�, TR) between the two electrodes 
is an antisymmetric function with respective to the Fermi 
energy �F = 0 , that is, Δf (�F − E) = −Δf (�F + E) . At 
VG = −10 Γ we have �m = �F = 0 for Ec=20Γ and the 
spin-up/down currents are opposite to each other, i.e., 
I↑ = ∫ ∞

−∞
dEΔf (E)T↑(E) = − ∫ ∞

−∞
dEΔf (E)T↓(E) = −I↓  . 

The total charge current vanishes and we have a pure spin 
current. In addition, the ⟨n��⟩ and I� versus VG curves for 
spin up are the rotational images of those for spin-down, 
that is ,  ⟨n𝛽𝜎⟩(VG) − 0.5 = 0.5 − ⟨n𝛽�̄�⟩(−EC − VG) and 
I𝜎(VG) = −I�̄�(−EC − VG) , as shown in Figs. 2 and 4b.

We now investigate the dependence of Is (i) on the mag-
netic field B and tunnel coupling tc , for VG = −10 Γ , and 
(ii) on VG and B for fixed tc = 9 Γ . The results for (i) are 
shown in Fig. 5a and those for (ii) in Fig. 5b. Panels (c) and 
(d) are cross sections of panels (a) and (b), respectively, for 
three values of tc and �B . The oscillatory dependence of Is 
on the magnetic field B and especially on VG is evident in (a) 
and (b). In (a) the spin current attains one or two maxima, 
depending on tc , and then decreases with �B , as the cross 
section in (c) confirms. Because of the aforementioned sym-
metry the charge current is always zero. Particularly interest-
ing is the fact that the pure spin current becomes negative 
for 𝜀B > 20 Γ for all tc shown and remains so for larger �B . 
Thus, by changing the field B one can control the sign of the 

Fig. 4  a Charge Ic (solid curve) and spin Is (dashed curve) cur-
rent versus VG . b I↑ and I↓ versus VG . c Dot energy levels versus VG . 
The purple (beige) horizontal band indicates the energy range with 
positive (negative) distribution difference fL� − fR� in the transport 
window. Here C1 = 0.14 and C−1 = 0.86 . The other parameters are 
�B = 18 Γ , tc = 5Γ , kBTL = Γ , kBTR = 0.5 Γ , and �L = �R = 0

Fig. 5  a Spin current Is 
versus magnetic field energy 
�B = �B∕2 and tunnel coupling 
tc but with fixed VG = −10 Γ , 
kBTL = Γ , kBTR = 0.5Γ , and 
�L = �R = 0 . b Spin current Is 
versus VG and magnetic field 
energy �B . c Cross sections of a 
for different tc . d Cross sections 
of b for different �B
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spin current. Further, Fig. 5d shows clearly the oscillatory 
dependence of Is on VG for three magnetic field energies �B . 
Such an oscillatory dependence, obviously not periodic, is 
absent in Refs. 15 and 21. It can be explained by a reasoning 
similar to that used for Fig. 4b.

The dependence of Is on tc is shown in Fig. 6a for different 
magnetic field energies �B but fixed VG = −10Γ , kBTL = Γ , 
kBTR = 0.5Γ , �L = �R = 0 . As seen, the spin current attains 
a maximum value and then slowly decreases with further 
increase of tc . As for the charge current, it always vanishes 
because of the symmetry mentioned above. In Fig. 6b we 
show Is versus VG for several tunnel couplings tc . Similar to 

Fig. 5b, such an oscillatory structure is absent from Refs. 
15 and 21.

We now turn our attention to the charge Sc and spin Ss 
Seebeck coefficients. We plot them versus VG and mag-
netic field energy �B , respectively, in Fig. 7a, b, for fixed 
tc = 0.1 Γ , kBT = Γ , � = 0 . Their oscillatory behavior with 
VG is prominent in both of them. Panels (c) and (d) are cross 
sections of (a) and (b) at different �B as indicated. We notice 
split peaks in the Sc curve and up or down shifts of Ss as 
�B increases. We also notice that Ss vanishes for �B = 0 . 
This behavior of Sc and Ss can be understood from the left 
shift of S↑ and right shift of S↓ shown in panels (e) and (f), 
respectively.

Fig. 6  a Spin current Is versus 
tunnel coupling tc for differ-
ent �B but fixed VG = −10 Γ . 
b Is versus VG for several 
tunnel couplings tc but fixed 
�B = 18Γ . The other parameters 
are: kBTL = Γ , kBTR = 0.5 Γ , 
�L = �R = 0

Fig. 7  a, b Charge Sc and spin 
Ss Seebeck coefficients versus 
VG and magnetic field energy �B 
with fixed tc = 0.1 Γ , kBT = Γ , 
� = 0 . c, d are, respectively, 
cross sections of a, b at different 
�B as indicated. For these �B 
panels e and f show the up ( S↑ ) 
and down ( S↓ ) components
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An oscillatory structure similar to that of Fig. 7 is shown 
in Fig. 8a, b where Sc and Ss are plotted versus VG for dif-
ferent tunnel couplings tc but fixed �B = 6Γ , kBT = Γ , 
� = 0 . We see that the oscillatory behavior is modified as tc 
increases but it is not as uniform as when �B does.

Charge and spin currents under an electric 
and a thermal bias

Having considered the effect of each bias separately, one 
wonders what would be the combined effect of both biases 
applied simultaneously to the DQD. In Fig. 9a, b we plot, 
respectively, the charge Ic and spin Is current versus kBTL and 
�L for fixed �B = 3 Γ,tc = 0.1 Γ , kBTR = 0.5 Γ , and �R = 0 . 
As seen, for nearly all values of �L , the magnitudes of both 
Ic and Is are mostly zero at small kBTL and increase rapidly 
when kBTL becomes significantly larger than kBTR . Note Ic 
changes signs with �L at large kBTR.

We also plot Ic , in Fig. 10a, and Is in Fig. 10b, as func-
tions of VG and magnetic field energy �B for fixed tc = 5 Γ , 
kBTL = Γ , kBTR = 0.1 Γ , �L = Γ , and�R = −Γ . Cross sec-
tions of (a) and (b), at �B = 3 Γ , are shown in Fig. 10c, d, 
respectively, by the solid black curves; the other curves are 
for different kBTL as indicated. Contrasting the results in (c) 
and (d) with those of Figs. 2 and 4, where, respectively, only 
an electric or thermal bias exists, one sees a rather significant 
difference as kBTL increases. In particular, as kBTL increases 
we see a progressive disappearance of the “plateau” region 
in Fig. 3 and an increase in the oscillation amplitude of Ic as 
well as the appearance of a plateau-like region in Is at large 
thermal bias.

Summary

We studied a side-gated double-quantum-dot (DQD) sys-
tem in the Coulomb blockade regime and in the presence 
of a magnetic field B . In the limit of weak inter-dot tunnel 
coupling tc , the system behaves similar to two independ-
ent, one-state dots. With the increase of tc , the degenerate 
levels of the two dots split and this results to current oscil-
lations versus the side-gate voltage VG for small positive or 
large negative values of VG . The field B separates the current 
spectrum of opposite spins and significantly modulates the 
current oscillations. Under a normal electric bias the spin 
current changes sign upon varying VG and so can the charge 
current if a spin-dependent bias is applied.

Charge- and spin-current oscillations versus VG can also 
result from a thermal bias ∇T  . In addition, ∇T  can produce 
a pure spin current at the electron–hole symmetry point. 
Importantly, one can control the sign of this pure spin cur-
rent by applying a field B of value above a “critical” one 
that depends on the tunnel coupling tc . The charge-Seebeck 

Fig. 8  a Charge Ic and b spin Is Seebeck coefficients versus VG for dif-
ferent tunnel couplings tc but fixed �B = 6 Γ , kBT = Γ , � = 0

Fig. 9  a Charge Ic and b spin 
Is current versus kBTL and �L 
for fixed �B = 3 Γ , tc = 0.1 Γ , 
kBTR = 0.5Γ , and �R = 0
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Sc and spin- Seebeck Ss coefficients can then oscillate non-
trivially depending on the voltage VG , the tunnel coupling 
tc , and the field B.

Finally, we explored the effect of simultaneously apply-
ing an electric and a thermal bias to the DQD and pre-
sented some results for the charge Ic and spin Is currents 
versus biases or VG . Relative to the single-bias case signifi-
cant changes occur in the results when the thermal bias is 
strengthened, e.g., the oscillation amplitude of Ic increases 
and a plateau-like region in Is appears at large thermal bias.

Acknowledgements This work was supported by National Natural Sci-
ence Foundation of China (Grant Nos 61674110 and 91121021 and 
6167204) and by the Canadian NSERC Grant No. OGP0121756.

Compliance with ethical standards 

Conflict of interest None of the authors of this manuscript have any 
competing interests.

References

Aguado R, Langreth DC (2000) Out-of-equilibrium Kondo effect in 
double quantum dots. Phys Rev Lett 85:1946

Alivisatos P (1996) Semiconductor clusters, nanocrystals, and quan-
tum dots. Science 271:5251

Aono T, Eto M (2001) Kondo resonant spectra in coupled quantum 
dots. ibid 63:125327

Baltin R, Gefen Y, Hackenbroich G, Weidenmuller HA (1999) Cor-
relations of conductance peaks and transmission phases in 
deformed quantum dots. Eur Phys J B. 10:119

Beenakker WJ (1991) Theory of Coulomb-blockade oscillations in 
the conductance of a quantum dot. Phys Rev B. 44:1646

Büsser CA, Anda EV, Lima AL, Davidovich MA, Chiappe G (2000) 
Transport in coupled quantum dots: kondo effect versus anti-
ferromagnetic correlation. Phys Rev B. 62:9907

Chen JC, Chang AM, Melloch MR (2004) Transition between quan-
tum states in a parallel-coupled double quantum dot. Phys Rev 
Lett 92:176801

Craig NJ, Taylor JM, Lester EA, Marcus CM, Hanson MP, Gossard 
AC (2004) Tunable non-local spin control in a coupled quantum 
dot system. Science 304::565

Dong B, Lei XL (2002) Kondo effect and anti-ferromagnetic correla-
tion in transport through tunneling-coupled double quantum dots. 
ibid 65:241304(R)

Georges, Meir Y (1999) Electronic correlations in transport through 
coupled quantum dots. Phys Rev Lett. 82:3508

Gómez-Silva G, Avalos-Ovando O. Ladrón de Guevara ML, Orellana 
PA (2012) Enhancement of thermoelectric efficiency and viola-
tion of the Wiedemann-Franz law due to Fano effect. J Appl Phys 
111:053704

Haug H, Jauho AP (2007) Quantum kinetics in transport and optics of 
semiconductors, 2nd edn. Springer, Berlin

Hong XK, Liu YS, Feng JF, Chu JH (2013) Thermal spin current 
through a double quantum dot molecular junction in the Coulomb 
blockade regime. J Appl Phys 114:144309

Izumida W, Sakai O (2000) Two-impurity Kondo effect in double-
quantum-dot systems—effect of interdot kinetic exchange cou-
pling. ibid. 62:10260

Jeong H, Chang AM, Melloch MR (2001) The Kondo effect in an 
artificial quantum dot molecule. Science. 293:2221

Jiang Z, Sun Q, Wang Y (2005) Kondo transport through serially cou-
pled triple quantum dots. Phys Rev B 72:045332

Fig. 10  a Charge current Ic 
and b spin current Is versus VG 
and magnetic field energy �B 
with fixed tc = 5 Γ , kBTL = Γ , 
kBTR = 0.1 Γ , �L = Γ , and 
�R = −Γ . c, d the solid black 
curves are cross sections of a, b, 
at �B = 3 Γ ; the other curves are 
for different kBTL as indicated



Applied Nanoscience 

1 3

Liu YS, Yang XF (2010) Enhancement of thermoelectric efficiency in a 
double-quantum-dot molecular junction J. Appl Phys 108:023710

Liu J, Sun Q-F, Xie XC (2010) Enhancement of the thermoelectric 
figure of merit in a quantum dot due to the Coulomb blockade 
Effect. Phys Rev B. 81:245323

Liu YS, Zhang DB, Yang. XF, Feng JF (2011) The role of Coulomb 
interaction in thermoelectric effects of an Aharonov–Bohm inter-
ferometer. Nanotechnology 22:225201

López R, Aguado R, Platero G (2002) Nonequilibrium transport 
through double quantum dots: Kondo effect versus antiferromag-
netic coupling. Ibid 89:136802

Sergueev N, Qing-Feng S, Guo H (2002) Spin-polarized transport 
through a quantum dot: Anderson model with on-site Coulomb 
repulsion. Phys Rev B 65:165303

Simon P, López R, Oreg Y (2005) RKKY and magnetic field interac-
tions in coupled Kondo quantum dots. Phys Rev Lett 94:086602

Torres LEFF, Lewenkopf CH, Pastawski HM (2003) Coherent versus 
sequential electron tunneling in quantum dots. Phys Rev Lett. 
91:116801.

van der Wiel WG, De Franceschi S, Elzerman JM et al (2002) Electron 
transport through double quantum dots. Rev Mod Phys. 75:1.

Vavilov MG, Glazman LI (2005) Transport spectroscopy of Kondo 
quantum dots coupled by RKKY interaction. Phys Rev Lett 
94:086805

Wang D-K, Sun Q-F, Guo H (2004) Spin-battery and spin-current 
transport through a quantum dot. Phys Rev B 69:205312

Yang XF, Liu YS (2013) Pure spin current in a double quantum dot 
device generated by thermal Bias. J Appl Phys 113:164310

Yang Z-C, Sun Q-F, Xie XC (2014) Spin-current Seebeck effect in 
quantum dot systems. J Phys Condens Matter 26:045302

Zhang GM, Lu R, Liu ZR. And L, Yu (2005) Swapping Kondo reso-
nances in coupled double quantum dots. Phys Rev B 72:073308

Zianni X (2007) Coulomb oscillations in the electron thermal conduct-
ance of a dot in the linear regime. Phys Rev B 75:045344

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.



Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


	Tunable spin-polarized transport through a side-gated double quantum dot molecular junction in the Coulomb blockade regime
	Abstract
	Introduction
	Model
	Results and discussion
	Sign change of spin or charge current under an electric or spin bias
	Pure spin current generated by a thermal bias
	Charge and spin currents under an electric and a thermal bias

	Summary
	Acknowledgements 
	References


