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Electrically controlled dc and ac transport in bilayer WSe2
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We investigate quantum transport in a bilayer WSe2 in the presence of an external potential V and interlayer
coupling. The dc and ac conductivities are evaluated in the framework of linear response theory. As functions of
the Fermi energy, the dc ones exhibit a nonmonotonic behavior with a flat region in the band gap. A deep local
minimum is visible in spin-Hall conductivity near the top of the valence band as a consequence of a large valence
band splitting. On the other hand, the ac spin- and valley-Hall conductivities, as functions of the frequency, show
two opposite peaks near the top of the valence band. The spin-Hall conductivity exhibits a minimum value at
V = 0 whereas the valley-Hall conductivity decreases monotonically upon varying V from negative to positive
values. Furthermore, we evaluate the power absorption spectrum and assess its dependence on the spin and
valley degrees of freedom. The results are pertinent to the development of electrically controlled spintronic and
valleytronic devices based on bilayer WSe2 and other group VI semiconductors.
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I. INTRODUCTION

In recent years, a lot of attention has been paid to experi-
mental and theoretical investigations of monolayers of group
VI transition metal dichalcogenides (e.g., MX2, M = Mo,
W; X = S, Se) because of their novel electronic and optical
properties arising from their unique band structures [1–6]. This
is because MX2 monolayers have a hexagonal honeycomb
structure similar to that of graphene, but with huge direct band
gaps and strong spin-orbit coupling (SOC). The former is due
to the breaking of the inversion symmetry and the latter because
the heavy metal’s d orbitals possess SOC, due to which the spin
and valley degrees of freedom are locked and give rise to exotic
effects such as the valley-Hall effect [7,8], the spin-Hall effect
[9,10], the quantum anomalous Hall effect [11], the valley
optical selection rules [2–5], and transistors [12,13].

In addition to MX2 monolayers, there has been a lot
of interest in MX2 bilayers. Bilayers exhibit rich electronic
properties such as electrical polarization [14,15], electrically
tuned magnetic moments [16], magnetoelectric effect [17,18],
and spin-layer locking physics [19]. Further, MX2 heterostruc-
tures (bilayers) are particularly important to photonics and
optoelectronics applications because of the strong excitonic
effect and valley-dependent phenomena [20–24], such as
ultrafast charge transfer [25,26] and formation of interlayer
excitons [23,27]. These studies have focused on heterobilayers
[22,23,25–29], such as MoSe2/WSe2 and MoS2/WS2, in
which the built-in interfacial electric field limits significantly
the tunability of interlayer excitons. On the other hand, this
built-in electric field is absent in pristine homobilayers that are
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formed by two identical MX2 monolayers. The weak interlayer
interaction further allows the separation of bilayer systems
into monolayer-like components by modest vertical electric
fields [16,19,31–33]. The earlier experimental studies reported
insignificant field effects on intralayer excitons [16,19,33]
whereas the application of a vertical electric field in recent [34]
high-quality bilayer samples allowed the generation of layer-
polarized exciton gases with widely tunable properties and
presented new opportunities for tunable electronic, photonic,
and optoelectronic devices [22,29,30].

It is important to note that the spin splitting in MX2

monolayers disappears almost completely in bilayers. Indeed,
in spintronic and valleytronic applications, it may be useful
to have a material in which the polarization can be switched
on and off. This can be achieved if the inversion symmetry in
the bilayer is broken by an external electric field normal to the
MX2 plane as it leads to a potential difference between the
individual layers and allows the control of valley polarization
[16]. This effect should be even more pronounced in WSe2

bilayers that show stronger spin-orbit splittings than the MoS2

ones. A WSe2 monolayer possesses a huge band gap 2� =
1.7 eV and large SOC [2λ′

v = 450 meV, 2λ′
c = 30 meV], and

WSe2 samples are of high quality [34]. In contrast, bilayer
graphene has intrinsically a very weak SOC [35,36] and, if
not biased, a zero band gap [37,38]. Although this gap can be
controlled by an electric field Ez [39–42], high-quality samples
of WSe2 bilayers with a strong intrinsic SOC and a huge band
gap are of particular importance.

In light of the above, we consider an external electric
field applied normal to a WSe2 bilayer. This field breaks
the inversion symmetry of MX2 monolayers, reduces the
electronic band gap linearly with its strength, and creates
significant spin splittings which quickly reach values similar
to those in monolayers. These observations can be explained
as a consequence of locking spin and layer pseudospin in a
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given valley [19]. This fact clearly demonstrates the important
coupling between spin and layer pseudospin in bilayer WSe2

and opens the possibility of spin and valley manipulation that
is important in the fields of spintronics, valleytronics, and
quantum logic [18].

More specifically, we investigate dc and ac transport in a
bilayer of WSe2 in the presence of interlayer coupling and
a perpendicular electric field. After presenting the basics of
the model and the linear response conductivities [43,44] in
Sec. II, we evaluate the latter numerically in Sec. III. Then in
Sec. IV we calculate the power absorption spectrum, assess
its dependence on the valley degree of freedom and V , and
summarize in Sec. V.

II. FORMALISM

A. Energy spectrum and eigenfunctions

A minimal band model of bilayer WSe2 in the neighborhood
of the K points can be constructed by adding interlayer cou-
pling to the k·p model of monolayers established in Refs. [16–
19]. In the presence of a perpendicular electric potential V , the
Hamiltonian takes the form

H =

⎛
⎜⎝

−ξ sτ
1 at k− γ 0

at k+ ξ sτ
2 0 0

γ 0 −ξ sτ
3 at k+

0 0 at k− ξ sτ
4

⎞
⎟⎠, (1)

where k± = τkx ± iky , ξ sτ
1 = � + V + τsλv, ξ

sτ
2 = � −

V − τsλc, ξ
sτ
3 = � − V − τsλv , and ξ sτ

4 = � + V + τsλc.
Notice that the term � can be neglected near the band edges;
cf. Refs. [18,19]. The basis is{(∣∣du

x2−y2

〉 − iτ
∣∣du

xy

〉)
/
√

2,
∣∣du

z2

〉
,(∣∣dl

x2−y2

〉 + iτ
∣∣dl

xy

〉)
/
√

2,
∣∣dl

z2

〉}T
, (2)

where T denotes the transpose and the superscripts “u” and
“l” denote the upper and lower layers, respectively. Here k
is the relative wave vector with respect to the K points, �

is the monolayer band gap, a is the lattice constant, t is the
nearest-neighbor intralayer hopping, with λc, λv being the
SOC strengths for electrons and holes, and V is the applied
electric field energy. Further, γ is the interlayer coupling for
holes, while the interlayer hopping for electrons vanishes at
K points due to the symmetry of the dz2 orbital. τ = ±1
is the valley index of bilayer bands and s denotes the spin.
Similar to monolayers, the spin-up and spin-down states are
still decoupled in bilayers, and interlayer coupling conserves
spin.

We now discuss the eigenvalues and eigenfunctions of
bilayer WSe2 without a magnetic field, near the K and K ′
valleys. Then Eq. (1) can be written in polar form as

Hτ =

⎛
⎜⎜⎝

−ξ sτ
1 ωτe−iτθk γ 0

ωτeiτθk ξ sτ
2 0 0

γ 0 −ξ sτ
3 ωτeiτθk

0 0 ωτe−iτθk ξ sτ
4

⎞
⎟⎟⎠, (3)

where τkx ± iky = kτe±iτθk , tan(τθk ) = τ (ky/kx ), k =
[k2

x + k2
y]1/2, ω = h̄vF k, and vF = at .

FIG. 1. Energy dispersion for bilayer WSe2 for � = 0.85 eV,
λc = 7.5 meV, λv = 112.5 meV, and γ = 0.067 eV. The upper panels
are for zero electric field energy V = 0, whereas the lower panels are
for V = 100 meV. The left (right) panels are for the K (K ′) valley
and W = √

(V + λv )2 + γ 2.

The eigenvalue problem pertinent to Eq. (3) leads to the
quartic equation for the energy E

E4 + a1E
2 + a2E + a3 = 0, (4)

where

a1 =−ξ sτ
1 ξ sτ

2 − ξ sτ
3 ξ sτ

4 +(
ξ sτ

2 − ξ sτ
1

)(
ξ sτ

4 − ξ sτ
3

) − γ 2 − 2ω2,

(5)

a2 = (
ξ sτ

2 − ξ sτ
1

)
ξ sτ

3 ξ sτ
4 +(

ξ sτ
4 − ξ sτ

3

)
ξ sτ

1 ξ sτ
2 + γ 2

(
ξ sτ

2 + ξ sτ
4

)
,

(6)

a3 = ξ sτ
1 ξ sτ

2 ξ sτ
3 ξ sτ

4 +ω2(ξ sτ
1 ξ sτ

2 + ξ sτ
3 ξ sτ

4

) − γ 2ξ sτ
2 ξ sτ

4 + ω4.

(7)

The solutions of Eq. (3) are

Es,τ
μ1μ2

= 1

2
√

3

{
μ1[−2a1 + B + A/21/3]1/2

+μ2

[
4a1+B+ 6

√
3 a2μ1√

−2a1+3B+A/21/3

]1/2
⎫⎬
⎭, (8)

where B = 21/3(a2
1 + 12a3)/A and

A =
[
C +

√
−4

(
a2

1 + 12a3
)2 + C2

] 1
3
, (9)

with C = 2a3
1 + 27a2

2 − 72a1a3. Here μ1 = +1(−1) is for the
conduction (valence) band whereas μ2 = +1(−1) is for the
upper (lower) layer.

In the upper panels of Fig. 1, we show the energy dispersion
for bilayer WSe2, at zero electric field Ez = 0 (V = 0 meV).
We note the following: (i) The splitting due to the SOC in
the conduction band is negligible and (ii) the splitting due to
interlayer coupling in the conduction band is zero but finite in
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the valence band. Furthermore, the splitting of the valence band
comes as a result of the combined effect of interlay coupling
and SOC and is given by 2

√
λ2

v + γ 2 at k = 0. This implies that
the valence band is split even for λv = 0. (iii) The gap between
the conduction and valence band edges is approximately given
by 2� − √

λ2
v + γ 2. In the lower panels of Fig. 1, we show the

energy dispersion for a finite electric field Ez (V = 100 meV).
The dotted curves correspond to the spin-down states. We point
out the following:

(a) The SOC splitting is modified by the presence of Ez,
while the spin splitting in the conduction band due to SOC is
small compared to that of the valence band.

(b) The gap is given by 2� − V − λc − W with W =√
(V + λv )2 + γ 2. The gap of monolayer WSe2 is 2� =

1.7 eV, the spin-orbit parameters are λc = 7.5 meV and λc =
112.5 meV, and the coupling γ = 0.067 eV [18]. Note that
some bands are degenerate due to the factor τs in the diagonal
elements ξi of the Hamiltonian; this entails E++

μ1μ2
= E−−

μ1μ2

and E+−
μ1μ2

= E−+
μ1μ2

. Notice that the valley and spin degrees
of freedom are coupled with the layer pseudospin [18,19].

(c) The spin and layer splittings are enhanced by the
electric field. Together with the tuning of the band gap (2�),
this should be useful in electrically controlled spintronic and
valleytronic devices based on bilayer WSe2 and similar group
VI semiconductors.

The normalized eigenfunctions corresponding to Eq. (3) are

ψs,τ
μ1,μ2

= Ns,τ
μ1,μ2√
LxLy

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
ωτeiτθ

(Es,τ
μ1μ2 −ξ sτ

2 )

�s,τ
μ1,μ2

ωτe−iτθ �s,τ
μ1μ2

(Es,τ
μ1μ2 −ξ sτ

4 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

eik·r, (10)

with �s,τ
μ1μ2

= [(Es,τ
μ1μ2

+ ξ sτ
1 )(Es,τ

μ1μ2
− ξ sτ

2 ) − ω2]/
[γ (Es,τ

μ1μ2
− ξ sτ

2 )] and the normalization coefficient

Ns,τ
μ1,μ2

=
{(

�s,τ
μ1,μ2

)2
[
1 + ω2/

(
Es,τ

μ1μ2
− ξ sτ

4

)2
]

+ 1 + ω2/
(
Es,τ

μ1μ2
− ξ sτ

2

)2
}−1/2

. (11)

In Fig. 2, we show the density of states (DOS) of bilayer
WSe2 as a function of the normalized energy E/� for V = 0
(black solid curve) and V = 100 meV (red dashed curve).
There is a visible asymmetry between the conduction and
valence band, which can also be deduced from Fig. 1: The
valence band splitting is significantly larger than that of the
conduction band. On the other hand, for large energies, the
DOS is approximately a linear function of the energy. It
can be seen that for V > 0 (red dashed curve) the gap is
reduced by V + √

V 2 + λ2
v . Further, for finite V one sees

additional splittings, near the band edges, tied to the spectrum
of Figs. 1(c) and 1(d). Together with the spin and layer splitting
enhancements by the electric field, these results significantly
affect the dc and ac transport properties; see Secs. III and IV.

B. Conductivities

To determine the conductivities we adopt the formalism
of Ref. [43]. We consider a many body-system described

Δ

FIG. 2. Density of states D(E) as a function of normalized energy
E/� for field energy V = 0 (solid black curve) and V = 100 meV
(red dashed curve).

by the Hamiltonian H = H0 + HI − R · F, where H0 is the
unperturbed part, HI is a binary type interaction, and −R · F
is the interaction of the system with an external field F with
R = ∑

i ri and ri being the position operator of electron i.
In the case of interest, F = eE, where E is the electric field
and e is the electron charge. In the representation in which H0

is diagonal, the many-body density operator ρ has a diagonal
part ρd and nondiagonal part ρnd , ρ = ρd + ρnd . For weak
electric fields and weak scattering, the conductivity tensor
has a diagonal and a nondiagonal part, σμν = σd

μν + σnd
μν ,

μ, ν = x, y.
There are two kinds of currents, diffusive and hopping, but

usually only one of them is present. When no magnetic field
is present, the hopping contribution vanishes identically; see
Eq. (2.65) in Ref. [43]. For elastic scattering, the component
σd

μν is given by [43]

σd
μν (iω) = βe2

S

∑
ζ

fζ (1 − fζ )
vνζ vμζ τζ

1 + iωτζ

, (12)

where ω is the frequency, τζ is the relaxation time, and vμζ

is the diagonal matrix element of the velocity operator, vμζ =
〈ζ |vμ|ζ 〉 (μ = x, y) with |ζ 〉 = |μ1, μ2, τ, sz, k〉, and S is the
area of the system. Further, fζ is the Fermi-Dirac distribution
fζ = {1 + exp[β(Eζ − EF )]}−1, β = 1/kBT , and T is the
temperature.

As far as the contribution σnd
μν is concerned, one can use

the identity fζ ′ (1 − fζ )[1 − eβ(Eζ ′ −Eζ )] = fζ ′ − fζ and cast
the original expression [43] in the familiar form

σnd
μν (iω) = ih̄e2

S

∑
ζ �=ζ ′

(fζ − fζ ′ ) vνζζ ′ vμζ ′ζ

(Eζ − Eζ ′ )(Eζ − Eζ ′ + h̄ω − iη)
,

(13)
where vνζζ ′ = 〈ζ |vν |ζ ′〉 and vμζ ′ζ = 〈ζ ′|vμ|ζ 〉 are the off-
diagonal matrix elements of the velocity operators with ν, μ =
x, y. The sum runs over all quantum states |ζ 〉 and |ζ ′〉
provided |ζ 〉 �= |ζ ′〉. From now on, the infinitesimal quantity η

in Eq. (13) will be replaced by �ζ in order to account for the
finite broadening of the energy levels.

075429-3
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σ

ε

FIG. 3. The diagonal conductivity σd
xx vs normalized Fermi en-

ergy εF = EF /� for τF = 10−14 s [45]. The black solid curve is for
V = 0 and the blue dash-dotted one for V = 100 meV.

III. NUMERICAL RESULTS

A. dc transport

First, we present numerical results for the diagonal part σd
xx

[Eq. (12)] in Fig. 3 as a function of the normalized Fermi energy
εF = EF /� assuming a relaxation time τF = 10−14 s [45] and
T = 300 K.

It can be seen that the conductivity σd
xx decreases monoton-

ically when the Fermi level EF is in the valence band, then
it vanishes for EF in the band gap since there are no states
to contribute to it, and finally rises again when EF is in the
conduction band.

As for the component σnd
xx , we do not show it because for

ω = 0 and μ = ν one can interchange the indices ζ and ζ ′ in
Eq. (13) and take half the sum. Then one finds σnd

xx (0) = 0 for
η = 0 or σnd

xx (0) � σd
xx (0) for η ≈ 0.

We now determine the dc spin- and valley-Hall conduc-
tivities by setting ω = 0 in Eq. (13). As mentioned above in
Eq. (12), σd

yx = 0; see Ref. [43]. The results for σnd
yx are

σ (s)
yx =

∑
τ

[
σnd

yx (τ, sz = +1) − σnd
yx (τ, sz = −1)

]
(14)

and

σ (v)
yx =

∑
sz

[
σnd

yx (τ = +1, sz) − σnd
yx (τ = −1, sz)

]
. (15)

Note that the charge conductivity σ c
yx = ∑

τ,sz
σ nd

yx (τ, sz) van-
ishes. Since a spin current is defined by Js = h̄/(2e)(J↑ − J↓),
one has to multiply σ (s)

yx by h̄/2e and σ (v)
yx by 1/2e.

In Figs. 4(a) and 4(b), we plot the spin- and valley-Hall
conductivities vs the normalized Fermi energy εF = EF /�.
The flat regions centered at εF = 0 are due to the fact that
factor f+,k − f−,k is constant when the Fermi energy lies in
a gap, e.g., in the range −0.75 � εF � 0.85 in the spin-Hall
conductivity for V = 0; see Fig. 4(a). This occurs because the
electric field and the spin current transform in the same way
under time-reversal and inversion symmetries. Notice though
that the valley-Hall conductivity vanishes in the entire range
of εF used for V = 0; see Fig. 4(b).

We now inspect the dependence of the spin- and valley-Hall
conductivities on the applied electric potential V . As shown in

 

σ
π

ε ε

 
 

σ
π

FIG. 4. (a) Spin-Hall conductivity vs normalized Fermi energy at
T = 300 K for V = 0 (solid curve) and V = 300 meV (dash-dotted
curve). (b) As in panel (a) for the valley-Hall conductivity.

Figs. 5(a) and 5(b), the former has a minimum for V = 0,
while the latter decreases with V . Furthermore, although not
shown, we also studied their behavior for interlayer coupling
γ = 0. Neglecting γ leads to larger values of the spin-Hall
conductivity, especially in the gap, while the trend is the
opposite for the valley-Hall conductivity. We remark at this
point that a consensus on the value of γ has not been reached:
Ref. [18] reported the value γ = 67 meV determined from ab
initio studies, while Ref. [19] used a value that is two orders
of magnitudes smaller.

B. ac transport

In this section, we evaluate the spin- and valley-Hall
conductivities for finite frequency, level broadening, and tem-
perature. We assume that the level broadening �ζ is the same
for all levels, i.e., �ζ ≈ �.

In Fig. 6(a), we show the diagonal part of the ac conductivity
σd

xx (ω), given by Eq. (12), and in Fig. 6(b) is the non-diagonal
part, σnd

xx (iω), obtained from Eq. (13). It can be seen that σd
xx

monotonically decreases in agreement with the denominator
in Eq. (12), while in Fig. 6(b) σnd

xx (ω) exhibits a kink near
α0 = 2.2 and a maximum at larger α0 = 2.5 as a result of
a large valence band splitting. This behavior is due to the
interlayer coupling, huge band gap, SOC, and the onset of
interband transitions, which occur, for V = 0, at α0 = 2.2 and
α0 = 2.5, and are associated with bands minima in Fig. 1. Upon
increasing V , the kink near α0 = 3.3 is further separated and
the band gap is tuned (blue dash-dotted curve).

Further, in Fig. 7(a) we show the spin-Hall conductivity,
while in Fig. 7(b) we show the valley-Hall conductivity vs
normalized frequency α0 = h̄ω/�. The solid black curve is
for broadening � = 20 meV and the red dashed one for � =
50 meV. The Fermi energy is taken to be EF = 0 eV and the

σ
π

σ
π

FIG. 5. (a) Spin-Hall conductivity vs potential V for T = 300 K.
(b) As in panel (a) for the valley-Hall conductivity. The Fermi level
is EF = −1 eV and the interlayer hopping γ = 67 meV.
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σ

α

σ

α

FIG. 6. Diagonal (a) and nondiagonal part (b) of the ac conduc-
tivity σxx (iω) vs the normalized frequency α0. The solid black curve
is for V = 0 and the blue dash-dotted one is for V = 300 meV. The
parameters used are EF = 1 eV, � = 20 meV, and γ = 67 meV.

temperature T = 300 K. The double peak near α0 = 2 is due
to the large splitting of the valence band and the fact that the
conductivities attain large values whenever the denominator
in Eq. (13) approaches zero, that is, when h̄ω ≈ Ec − Ev ≈
2�, i.e., α0 ≈ 2 at V = 0 (black solid curve). The asymmetric
peaks, for V = 0, are due to the interlayer coupling and SOC;
the peak near 1.9α0 is due to net spin-up (-down) accumulation
in one transverse direction while a negative conductivity yields
a net spin-up (-down) accumulation in the opposite direction at
α0 = 2.2. It is also visible that a larger level broadening, here
� = 50 meV, smears out the peaks.

Γ
Γ

Γ

[σ
π

α

Γ
Γ

Γ

α

[σ
π

FIG. 7. (a) Spin-Hall conductivity vs frequency for T = 300 K,
EF = 0, and V = 0. The black solid curves are for � = 20 meV and
the red dashed ones for � = 50 meV. (b) As in panel (a) for the valley-
Hall conductivity. The blue dash-dotted curve is for V = 100 meV
and � = 20 meV.

α

α

FIG. 8. Power spectrum vsα0 = h̄ω/� in units ofE2e2/2h for (a)
the K valley and (b) the K ′ valley. In both cases, we used τF = 10−14 s
[45], V = 0, and � = 20 meV. The solid black curve corresponds to
EF = 0, the red short-dashed one to EF = 1 eV, and the blue dash-
dotted curve to V = −300 meV (EF = 1 eV).

IV. POWER SPECTRUM

The average power absorbed from circularly polarized light
of frequency ω and electric field E (within linear response
theory) is given by

P (ω, τ, sz) = (E2/2)Re{σxx (iω, τ, sz) + σyy (iω, τ, sz)

− iσxy (iω, τ, sz) + iσyx (iω, τ, sz)}. (16)

We point out that σxx (iω, τ, sz) = σyy (iω, τ, sz) and
σnd

xy (iω, τ, sz) = −σnd
yx (iω, τ, sz). Further, we have

σd
yx (iω, τ, sz) = −σd

xy (iω, τ, sz) = 0; see Ref. [43]. Then
Eq. (16) simplifies to

P (ω, τ, sz) = E2Re
{
σd

xx (iω, τ, sz)

+ σnd
xx (iω, τ, sz) + iσ nd

yx (iω, τ, sz)
}
. (17)

We consider the two valleys separately but sum over both spin
directions. Thus, with L = K,K ′, one may write

P (ω,L) = P (ω,L, 1) + P (ω,L,−1) . (18)

In Figs. 8(a) and 8(b), we show the power spectrum as a
function of the normalized frequency α0 for the K and K ′
valley, respectively. The common parameters: relaxation time
at the Fermi level τF = 10−14 s [45] and level broadening � =
20 meV. Further, EF = 0 eV for the solid black and EF = 1 eV
for the red short-dashed curve and the blue dash-dotted one
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γα

FIG. 9. (a) Power spectrum vs α0 in units of E2e2/2h. The
parameters used are τF = 10−14 s [45], V = 0, � = 20 meV, and
EF = 0 (solid black curve) and EF = 1 eV (red short dashed).
(b) Power spectrum vs γ for four potentials V , at fixed α0 = 2.2
corresponding to the maximum in panel (a).

(V = −300 meV). It can be seen that the values of P (ω,K )
are approximately the same as those of P (ω,K ′) for V = 0 eV.
One also sees that for large Fermi energy, EF = 1 eV (red
short-dashed curve), the kink and maximum are shifted toward
higher frequencies. Also, in line with Figs. 6 and 7, the
nonmonotonic behavior appears as a result of a large valence
band splitting at V = 0 (black solid curve). The electrostatic
potential V = −300 meV suppresses the contribution of the K

valley (blue dash-dotted curve), while for the K ′ valley it shifts
to lower frequencies. Though not shown, the influence of the
electrostatic potential has minor effects when the Fermi level
lies in the middle of the band gap (EF = 0 eV). In accordance
with Figs. 6 and 7, the kink and the maximum in Fig. 8 are due to
the interlayer coupling, huge band gap, and SOC. Furthermore,
they result from interband transitions which occur at smaller
(2.2) α0 and larger (2.5) α0 and are associated with bands
minima in Fig. 1. Upon increasing V , the band gap is tuned
(blue dash-dotted curve).

The total power spectrum P (ω) is shown in Fig. 9(a). As in
the case of its particular conductivity components, we observe
a kink and a maximum, at α0 = 2.2, for EF = 0 which are
shifted to the right for EF = 1 eV (red short-dashed curve).
Upon comparing with our similar work on MoS2 (Ref. [46])
we see that in MoS2 we observed a dip between α0 = 0 and
α0 = 2, whereas here we have a dip until α0 = 1.75. This can
be explained by the facts that (1) the valence band splitting is
larger in WSe2 than in MoS2. (2) The conduction band splitting
is finite here. In accordance with Figs. 6–8, the nonmonotonic
behavior here is due to the interlayer coupling, huge band
gap, and SOC. These peaks are due to the onset of interband
transitions which occur at α0 = 2.2 and are associated with
bands minima shown in Fig. 1. Upon increasing V the band
gap is tuned (blue dash-dotted curve).

Finally, in Fig. 9(b) we show the total power spectrum
versus interlayer coupling γ for four values of the electric
potential: V = 0 meV (solid black curve), V = 100 meV
(blue dash-dotted curve), V = 200 meV (red dash-dotted
curve), and V = 300 meV (magenta short-dashed curve), all
at fixed normalized frequency α0 = 2.2 corresponding to the
maximum in Fig. 9(a). We show it as a function of continuous
γ for pedagogical purposes since a consensus on the value
of γ has not been reached in the literature. As seen, the
power spectrum decreases weakly with γ . The influence of
the potential V is, in general, to weaken this decline.

V. SUMMARY

We investigated dc and ac transport in a bilayer of WSe2

in the presence of interlayer coupling and of a perpendicular
electric field or potential V . The dc and ac conductivities were
evaluated numerically using general linear response expres-
sions. The dc spin- and valley-Hall conductivities exhibit a
nonmonotonic behavior as functions of the Fermi energy with
a visible flat region in the band gap. A large valence band
splitting results in two peaks near the top of the valence band
for finite V . On the other hand, the ac spin- and valley-Hall
conductivities, as functions of the frequency, show double
peaks near the top of the valence band.

We also evaluated the power absorption spectrum and
assessed its dependence on the frequency ω, the valley degree
of freedom, and partly the potential V . We found out that
both valleys contribute equally to the power spectrum P (ω)
when V = 0 eV [see Figs. 8(a) and 8(b)]; this applies to the
total power spectrum P (ω) shown in Fig. 9 as well. Moreover,
both P (ω,K ) and P (ω,K ′) have a dip at α0 = h̄ω/� = 1.75.
In either case, this is tied to the contribution σnd

yx (ω) and the
fact that the valence band is split significantly for all values
of k.

Our results for WSe2 can be applied to bilayer MoS2 in
the limit of zero spin-orbit coupling in the conduction band;
cf. Ref. [47]. They can also be extended to other transition-
metal dichalcogenides of the group VI. As such, they have
potential applications in electrically controlled spintronic and
valleytronic devices based on these materials given that electric
knobs have recently been realized that control nanoelectronic
devices; see Ref. [48].
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