

A LETTERS JOURNAL EXPLORING THE FRONTIERS OF PHYSICS

LETTER

Zeeman- and electric-field control of spin- and valley-polarized transport through biased magnetic junctions on ${\rm WSe}_2$

To cite this article: M. Tahir et al 2017 EPL 118 17001

View the article online for updates and enhancements.

Related content

- <u>Optical</u>, electric and magnetic controlled ballistic conductance in monolayer WSe2: the perfect valley and spin polarizations X J Qiu, Q Lv and Z Z Cao
- <u>Spin and valley-dependent electron</u> <u>transport through arrays of ferromagnet on</u> <u>monolayer MoS2</u> X J Qiu, Z Z Cao, Y F Cheng et al.
- <u>A valley and spin filter based on gapped</u> <u>graphene</u> Jing Wang, Mengqiu Long, Wen-Sheng Zhao et al.

Zeeman- and electric-field control of spin- and valley-polarized transport through biased magnetic junctions on WSe₂

M. TAHIR^{1(a)}, P. M. KRSTAJIĆ^{2(b)} and P. VASILOPOULOS^{3(c)}

¹ Department of Physics, College of Science, University of Hafr Al Batin - P.O. Box 1803, Hafr Al Batin 31991, Kingdom of Saudi Arabia ² Center of Microelectronic Technologies and Single Crystals (IHTM), University of Belgrade

Njegoševa 12, 11000 Belgrade, Serbia

³ Department of Physics, Concordia University - 7141 Sherbrooke West, Montreal, Quebec, H4B 1R6, Canada

received 27 February 2017; accepted in final form 10 May 2017 published online 30 May 2017

PACS 73.40.Gk - Tunneling

PACS $\ensuremath{\texttt{74.55.+v}}\xspace$ – Tunneling phenomena: single particle tunneling and STM PACS 72.25.-b - Spin polarized transport

Abstract – The electronic properties of WSe₂ comprise a huge spin-orbit coupling, a wide direct band gap, and especially a strong anisotropic lifting of the degeneracy of the valley degree of freedom in a magnetic field. We study ballistic electron transport through single or double junctions on monolayer WSe₂ in the presence of spin M_s and valley M_v Zeeman fields and of an electric potential U. The conductance vs. the field M_s or M_v decreases in a fluctuating manner. For a single junction the spin P_s and valley P_v polarizations rise with $M = M_v = 2M_s$, reach a value of more than 70%, and become perfect above $U \approx 90$ meV while for a double junction this change can occur for $U \approx 50 \text{ meV}$ and $M \geq 10 \text{ meV}$. P_v increases with U and both polarizations oscillate with the junction width. The results may render WSe₂ a promising candidate for new spintronic and valleytronic devices.

Copyright © EPLA, 2017

Introduction. – Currently there is a strong interest in two-dimensional (2D) systems as potential hosting materials for applications in spintronics and valleytronics [1]. Similar to graphene [2], the first hexagonal Brillouin zone of group-VI monolayer transition metal dichalcogenides (TMDs) (e.g., MX₂, M = Mo, W; X = S, Se, Te) [3–7] accommodates pairs of inequivalent valleys. Distinctively, the monolayer MX₂ exhibits a huge gap and strong spinorbit coupling (SOC). This enables valley-dependent optical selection rules which allow for valley polarization and spin-valley coupling. The valence and conduction band extrema are located at both K and K' valleys at the corners of the hexagonal Brillouin zone and give rise to the valley degree of freedom of the band-edge electrons and holes [8–11]. In contrast to the extensive theoretical [12] and experimental efforts on spin- and valleycontrolled applications of MoS_2 as well as silicine [13–15], the high quality of WSe_2 [16] and its much stronger SOC,

 $2\lambda'_{v} = 450 \,\mathrm{meV}$ in the valence band and $2\lambda'_{c} = 30 \,\mathrm{meV}$ in the conduction band, provide an excellent system for spinvalley controlled materials [17,18]. Although monolayer WSe₂ is a direct bandgap semiconductor $(2\Delta = 1.7 \,\mathrm{eV})$, the lifting of the valley degeneracy allows for optical manipulation of the electron valley index or degree of freedom, e.g., by an external magnetic field applied perpendicular to the 2D layer [17,18]. The lifting of the valley degeneracy in WSe₂ monolayers is achieved by monitoring the energy splitting between the two circularly polarized luminescence components, σ^+ and σ^- , associated with optical recombination in the non-equivalent valleys. Direct optical transitions in monolayer WSe₂ occur at the edge of the Brillouin zone, which mainly consists of strongly localized *d*-orbitals of the transition metal. This is in contrast with GaAs and other conventional semiconductors used in optoelectronics, where the direct optical band gap is situated at the centre of the Brillouin zone. In monolayer WSe_2 there are several possible contributions to the Zeeman splitting as the emission of circularly polarized light originates from states with contrasting valley index, spin, and orbital magnetic moment. Moreover, recently

⁽a) E-mail: m.tahir06@alumni.imperial.ac.uk

⁽b)E-mail: predrag2220gmail.com

⁽c)E-mail: p.vasilopoulos@concordia.ca

WSe₂ transistors have been demonstrated to have high mobility at room temperature [19]. In addition, the advantage of WSe₂ over, for example, silicine, is that we do not need large perpendicular electric fields [15] to achieve a significant gap. Valley-polarized transport in WSe₂ has been investigated in ref. [20], while spin-valley relaxation and quantum transport regimes in 2D transition-metal dichalcogenides has been treated in ref. [21]. It is also worth mentioning the study of local Andreev reflection in a MoS₂-based bipolar transistor [22], where pure valleyand spin-entangled states have been predicted.

We theoretically study valley- and spin-polarized transport through a single or double magnetic junction or barrier in monolayer WSe_2 . We find that *fully* valley- and spin-polarized currents can be obtained simultaneously through such junctions for certain ranges of the relevant Zeeman and electric fields. We emphasize that the spin splitting near the valence-band edges is essential to the valley-polarized transport. At zero voltage we show that it is possible to achieve spin P_s and P_v valley polarizations close to 30% for reasonable values of M_s and M_s . Applying a voltage to the barrier one can achieve $P_v \approx 85\%$ and $P_s \approx 70\%$. Perfect polarizations can be reached for $M \ge 10 \,\mathrm{meV}$ and $U \ge 80 \,\mathrm{meV}$. For double barriers the behaviour of the conductance is similar to that of a single barrier but P_v and P_s can become perfect for M > 10 meVand $U \ge 50 \text{ meV}$. The details are as follows.

Transmission, conductance, and polarizations. – We consider a monolayer of WSe₂ in the (x, y)-plane in the presence of intrinsic SOC, spin and valley Zeeman fields. The 2D Dirac-like Hamiltonian [16] of WSe₂ is

$$H_{s_z}^{\eta} = v(\eta \sigma_x p_x + \sigma_y p_y) + \Delta \sigma_z + \eta s_z (\lambda_c \sigma_+ + \lambda_v \sigma_-) + s_z M_s - \eta M_v + U(x).$$
(1)

Here $\eta = \pm 1$ for valleys K and K', Δ is the mass term that breaks the inversion symmetry, $\lambda_c = \lambda'_c/2, \lambda_v = \lambda'_v/2.$ Furthermore, $(\sigma_x, \sigma_y, \sigma_z)$ are the Pauli matrices for the valence and conduction bands, and $\sigma_{\pm} = \sigma_0 \pm \sigma_z$ (σ_0 is the unity matrix); $v (5 \times 10^5 \,\mathrm{m/s})$ denotes the Fermi velocity of Dirac fermions. Spins up and down are denoted by $s_z = +1$ and -1, respectively. Further, M_s is the Zeeman field induced by magnetic order, while M_v breaks the valley symmetry of the levels. In principle, they can be induced by an external magnetic field, $M_s = g' \mu_B B/2, \ M_v = g_v \mu_B B/2$, where g' is the Landé g-factor $(g' = g'_e + g'_s)$, and μ_B the Bohr magneton [17,18]. Also, $g'_e = 2$ is the free-electron g-factor and $g'_s = 0.21$ is the out-of-plane factor due to the strong SOC in WSe₂. The last term in eq. (1) is the electric potential applied to the magnetic barrier. For a single barrier we have U(x) = U in region II and U(x) = 0 elsewhere. Finally, for the valley degree freedom one has $g'_v = 4$ [17,18]. In addition, an enhanced valley splitting can be achieved by an interfacial magnetic field produced by placing a monolayer WSe_2 on a substrate made of magnetic EuS [23]. We note at this point that relatively long carrier diffusion

Fig. 1: (Colour online) Dispersion E(k) in WSe₂, for (a) $M_s = M_v = 0$, and (b) $M_s = 30 \text{ meV}$ and $M_v = 60 \text{ meV}$. In both panels $\Delta = 0.85 \text{ eV}$, $\lambda_v = 112.5 \text{ meV}$, and $\lambda_c = 7.5 \text{ meV}$.

lengths (380 nm) have been reported [24] for monolayer WSe₂, which enables us to treat ballistic transport.

The eigenvalues of the Hamiltonian (1) are given by

$$E_{s_z,t}^{\eta} = \eta s_z (\lambda_c + \lambda_v) + s_z \mathbf{M}_s - \eta \mathbf{M}_v + U(x) + t E_{s_z}^{\eta}, \quad (2)$$

with $E_{s_z}^{\eta} = [(\hbar v k)^2 + [\Delta + \eta s_z (\lambda_c - \lambda_v)]^2]^{1/2}$. The corresponding eigenfunctions are

$$\Psi_{s_z,t}^{\eta} = \left(e^{i\mathbf{k}\cdot\mathbf{r}}/D_k\right) \begin{pmatrix} \eta c_k e^{-\eta i\theta} \\ b_k \end{pmatrix},\tag{3}$$

where $c_k = \hbar v k$, $b_k = -\Delta - \eta s_z (\lambda_c - \lambda_v) + t E_{s_z}^{\eta}$, $D_k = [c_k^2 + [\Delta + \eta s_z (\lambda_c - \lambda_v) - t E_{s_z}^{\eta}]^2]^{1/2}$, and $\theta = \tan^{-1}(k_y/k_x)$. Further, t = 1(-1) denotes the conduction (valence) band, and k is the 2D wave vector. Notice that there is no external magnetic field in eq. (2) but we have considered the spin and valley Zeeman field as discussed in detail below eq. (1).

The spectrum (2) is shown in fig. 1 vs. ka_0 (where $a_0 = 0.331$ nm is the lattice constant) for two cases: (a) $M_s = M_v = 0$ and (b) $M_s = 30$ meV and $M_v = 60$ meV. As can be seen, the valence band has a larger splitting even when the Zeeman field is present. We find that there is a valley asymmetry due to the application of magnetic field. This can be understood from the valley Zeeman term M_v in eq. (2) which makes the two valleys non-degenerate in both bands. This clearly confirms the magnetic-field–controlled valley pseudospin degree of freedom in WSe₂.

We now use these considerations to study ballistic electron transport across a magnetic junction in WSe₂ with a metallic gate only above it, see fig. 2. We assume that regions I and III in fig. 2 are made of the usual WSe₂ (no Zeeman field, $M_s = M_v = 0$ and no potential barrier U(x) = 0), while a magnetic barrier is placed in region II $(U(x) \neq 0)$ in which the full Hamiltonian (1) applies. For x < 0 the wave functions are

$$\Psi_{1}(x,y) = e^{i\mathbf{k}\cdot\mathbf{r}} \binom{A_{1}e^{-i\eta\theta}}{B_{1}} + r_{\eta s_{z}}e^{i(-k_{x}x+k_{y}y)} \binom{A_{1}e^{-i\eta(\pi-\theta)}}{B_{1}}, \quad (4)$$

Fig. 2: (Colour online) Schematics of a single barrier, of width d, on WSe₂. M_s , M_v , and U(x) are finite in region II and vanish elsewhere.

where $A_1 = \eta c_k / D_k$ and $B_1 = b_k / D_k$. The result

$$\Psi_{2}(x,y) = Pe^{i(q_{x}x+k_{y}y)} \begin{pmatrix} A_{2}e^{-i\eta\varphi} \\ B_{2} \end{pmatrix} + Qe^{i(-q_{x}x+k_{y}y)} \begin{pmatrix} A_{2}e^{-i\eta(\pi-\varphi)} \\ B_{2} \end{pmatrix}.$$
 (5)

is for 0 < x < d. Finally, for x > d, we have

$$\Psi_3(x,y) = t_{\eta s_z} e^{i\mathbf{k}\cdot\mathbf{r}} \binom{A_1 e^{-i\eta\theta}}{B_1}.$$
 (6)

Here $A_2 = \eta c_q/D_q$, $c_q = \hbar v (q_x^2 + k_y^2)^{1/2}$, and $D_q = [c_q^2 + [-\Delta - \eta s_z(\lambda_c - \lambda_v) + tE_{s_z}^{\eta}(q_x, k_y)]^2]^{1/2}$. Also, $B_2 = b_q/D_q$ and $b_q = -\Delta - \eta s_z(\lambda_c - \lambda_v) + tE_{s_z}^{\eta}(q_x, k_y)$. Further, θ and φ are the angles of incidence and reflection given by $\theta = \tan^{-1}(k_y/k_x)$, $k_x = k_F \cos \theta$, $k_y = k_F \sin \theta$, with k_F the Fermi momentum, $q_x = [k_F'^2 - k_y^2]^{1/2}$, and $\varphi = \tan^{-1}(k_y/q_x)$. k'_F includes the changes in potential or/and Zeeman field, while the wave vector k_y and the energy E are conserved.

The coefficients $r_{\eta s_z}$, P, Q and $t_{\eta s_z}$ are determined by the continuity of the wave functions at the interfaces, *i.e.*,

$$\Psi_{I}(0-,y) = \Psi_{II}(0+,y), \quad \Psi_{II}(d-,y) = \Psi_{III}(d+,y).$$
(7)

The resulting transmission $T_{\eta s_z} = |t_{\eta s_z}|^2$ reads

$$T_{\eta s_z} = 1/ \left[1 + \sin^2(q_x d) (F^2(\gamma, \theta, \varphi) - 1) \right], \quad (8)$$

where $\gamma = k_F b_q / (k'_F b_k)$ and $F(\gamma, \theta, \varphi) = (\gamma + \gamma^{-1} - 2\sin\theta\sin\varphi) / (2\cos\theta\cos\varphi).$

Now we are ready to evaluate the conductance due to a particular spin and valley; it is given by

$$G_{\eta s_z} = G_0 \int_{-\pi/2}^{\pi/2} T_{\eta s_z}(\theta) \cos \theta \mathrm{d}\theta = G_0 g_{c\eta s_z}, \qquad (9)$$

Fig. 3: (Colour online) Conductance vs. $M = M_v = 2M_s$ (black and red curves) and vs. $M = M_v = M_s$ (blue and green curves) with $E_F = 0.95 \,\text{eV}$ and $U = 0 \,\text{meV}$ or $U = 35 \,\text{meV}$ as indicated.

where $G_0 = e^2 k_F W/(2\pi h)$, and W is the width along the y-direction. Furthermore, the spin P_s and valley P_v polarizations are defined as

$$P_s = \frac{g_{c\uparrow} - g_{c\downarrow}}{g_{c\uparrow} + g_{c\downarrow}} \quad \text{and} \quad P_v = \frac{g_{cK} - g_{cK'}}{g_{cK} + g_{cK'}}. \tag{10}$$

Below we will present various results for the conductance and polarizations. In the calculations we use the Fermi energy E_F for which both spin states and valleys in regions I and III are occupied.

Results and discussion. – In fig. 3 we show the total conductance g_c vs. the Zeeman field M given in the caption. The various curves are marked in the inset by the values of M_s , M_v , and U used. The Fermi level is $E_F = 0.95 \,\text{eV}$. For U = 0 the conductance g_c decreases with M but the decrease weakens considerably for $U \neq 0$ and $M \geq 20 \,\text{meV}$ (lower curves) or $M \geq 60 \,\text{meV}$ (upper curves).

Next we present results in fig. 4 for the spin P_s (red solid curve) and valley P_v (blue dashed curve) polarizations vs. barrier width d. The left panels are for $M_s = 30 \text{ meV}$ and $M_v = 60 \text{ meV}$, while the right panels are for $M_s = 60 \text{ meV}$ and $M_v = 30 \text{ meV}$. Also two values of the potential are considered, U = 0 meV (upper panels) and U = 45 meV(lower panels). As expected, both polarizations start from zero for vanishing d. As d increases they rise and attain some values around which they oscillate. If we use $M_s = M_v = 60 \text{ meV}$, we obtain $P_v = |P_s| \approx 30\%$, for U = 0 meV, and $P_v = |P_s| \approx 40\%$ for U = 45 meV. In all cases the oscillations result from two oscillating terms that depend on different propagating wave vectors for two different spin/valley indices in region II. We note that $|P_s| > |P_v|$ whenever $M_s > M_v$ and vice versa. Moreover, it can be seen that an applied voltage raises P_v above 80%

Fig. 4: (Colour online) Spin (red curve) and valley (blue) polarization as functions of the barrier width d, for $M_s = 30 \text{ meV}$, $M_v = 60 \text{ meV}$ (left panels), and $M_s = 60 \text{ meV}$, $M_v = 30 \text{ meV}$ (right panels). The upper panels are for U = 0, the lower ones for U = 45 meV, and all for $E_F = 0.95 \text{ eV}$.

Fig. 5: (Colour online) Polarizations P_s and P_v vs. potential U for $E_F = 0.95 \,\text{eV}, d = 30 \,\text{nm}, \text{ and } M_v = 2M_s = 60 \,\text{meV}.$

and $|P_s|$ close to 70%. As for the opposite signs of P_s and P_v , they are due to the term $s_z M_s - \eta M_v$ in eq. (1).

Further, we investigate the influence of applying a voltage U in region II while keeping other parameters fixed. In fig. 5 we show P_s and P_v as functions of the applied voltage U for $E_F = 0.95 \,\mathrm{eV}$, $d = 30 \,\mathrm{nm}$, $M_s = 30 \,\mathrm{meV}$ and $M_v = 60 \,\mathrm{meV}$. The valley polarization rises with increasing voltage U and attains a value close to 90%, for $U = 50 \,\mathrm{meV}$, while $|P_s|$ increases up to 18% for $U \approx 25 \,\mathrm{meV}$ but then decreases. The lower maximal values of $|P_s|$ compared to those of $|P_v|$ occur because we assumed $M_v > M_s$; if we use $M_v < M_s$ we obtain the opposite behaviour, *i.e.*, $|P_v| < |P_s|$.

In order to investigate the combined influence of the Zeeman fields and applied voltage on both polarizations, we show contour plots of P_s in fig. 6(a) and of P_v in fig. 6(b) (we set $M_s = M_v$). We see that P_v becomes

Fig. 6: (Colour online) (M, U) contour plots of (a) spin polarization; (b) valley polarization. Both panels are for $E_F = 0.95 \text{ eV}$ and barrier width $d = 30 \text{ nm} (M_s = M_v)$.

Fig. 7: (Colour online) Spin (red curve) and valley (blue curve) polarization vs. gate voltage U for a double-barrier structure and barrier separation b = 30 nm. The Fermi level is $E_F = 0.95 \text{ eV}$ and the barrier width $d = 30 \text{ nm} (M_s = M_v)$.

perfect for $M \geq 15 \text{ meV}$ and large $U \geq 90 \text{ meV}$ (magenta region), and $|P_s|$ for $M \geq 10 \text{ meV}$ and $U \geq 85 \text{ meV}$ (darkblue region). Notice that the colour codes are different in the two panels and that in other regions P_v and $|P_s|$ attain high values, in the range from 70% to 90%, for lower values of U though mostly for higher values of M.

We proceed by considering two junctions or barriers separated by a normal WSe₂ layer, of thickness *b* and different values of the Zeeman fields and bias, M, U in the first, 2M, 2U in the second, with $M_s = M_v = M$. In fig. 7 we show the results for such a structure: the red curve shows the spin polarization and the blue one the valley polarization as functions of the applied voltage *U*. The barrier width (*d*) and separation (*b*) are d = b = 30 nm, and M = 60 meV, while the Fermi level is $E_F = 0.95$ eV. As shown, high polarizations (in absolute sense) can be achieved for U > 40 meV.

Next, in fig. 8 we plot P_s (red curve) and P_v (blue curve) vs. the Zeeman field $M_v = 2M_s = M$. The left panel is for U = 0 meV and the right one for U = 35 meV. Both polarizations exhibit less monotonic behaviour. These results show that with an appropriate applied voltage one

Fig. 8: (Colour online) Polarizations, as indicated, as functions of the Zeeman field $M_v = 2M_s = M$, for $E_F = 0.95 \,\text{eV}$, and $b = 30 \,\text{nm}$. The left panel is for U = 0 and the right one for $U = 35 \,\text{meV}$.

Fig. 9: (Colour online) Polarizations, as indicated, as functions of the normal layer width b for $M_v = 2M_s = M$, $E_F = 0.95 \text{ eV}$, and d = 30 nm. The upper panel is for (M, U) = (30, 20) meV and the lower one for (M, U) = (60, 5) meV.

can increase the valley polarization close to 100% for M = 100 meV.

We also varied the width b in the range (0-30) nm and show both polarizations in fig. 9, for two sets of (M, U)values: (a) (100, -12) meV and (b) (60, 5) meV. One can see that P_v shows regular oscillations in panel (a) but less regular in panel (b). In both cases the relative change is not large, about 6%. As for P_s , its oscillations in panel (b) are about a factor of 2 smaller than in panel (a). Finally, in fig. 10 we show (M, U) contour plots of P_s and P_v , for two barriers $(M_s = M_v = M)$, as in fig. 7, when both M and U are varied. Comparing with the single-barrier case one

Fig. 10: (Colour online) (M, U) contour plots of the doublebarrier case: (a) spin polarization; (b) valley polarization. Both panels are for $E_F = 0.95 \,\mathrm{eV}$, barrier width $d = 30 \,\mathrm{nm}$, and barrier separation $b = 30 \,\mathrm{nm}$.

can conclude that high values of P_s and P_v (in absolute sense) are obtainable in wider regions of the (M, U)-plane. One can see that perfect P_v and $|P_s|$ are achievable for $M \geq 5 \text{ meV}$ and U close to 50 meV or higher, see blue region in the left panel and the red one in the left panel.

In summary, we studied the Zeeman- and electric-fieldcontrolled spin- and valley-polarized transport through biased, single or double magnetic junctions on monolayer WSe_2 . The degree of polarization depends on the values of M_s , M_v , and U. We showed that fully valley- and spin-polarized currents can be obtained simultaneously in such junctions in some ranges of the parameters involved, especially for double junctions, cf. fig. 8. Physically in WSe₂ junctions, the Zeeman field opens different spindependent band gaps at the K and K' valleys, which, in turn, induce spin- and valley-polarized currents. By interchanging the values of M_s and M_v the values of P_s and P_v are interchanged but, though not shown, the total conductance remains the same. As functions of the junction width the polarizations rise and attain certain values, which can be in the range from 70% to 85% when a voltage is applied, around which they oscillate. Their values also depend on the Fermi energy E_F used; though not shown, in general they decrease with E_F . All these results confirm the magnetic and electric control of the polarizations and contribute significantly to the fundamental investigations of the electronic properties of 2D WSe₂. As such, they may be very relevant to the design of spintronic and valleytronic devices.

* * *

This work was supported by the University of Hafr Al Batin (MT), the Ministry of Education, Science, and Technological development of Serbia within the Project No. TR 32008 (PMK), and the Canadian NSERC Grant No. OGP0121756 (PV).

REFERENCES

 XU X., YAO W., XIAO D. and HEINZ T. F., Nat. Phys., 10 (2014) 343.

- [2] LIAO L., LIN Y.-C., BAO M., CHENG R., BAI J., LIU Y., QU Y., WANG K. L., HUANG Y. and DUAN X., *Nature*, 467 (2010) 305; SCHWIERZ F., *Nat. Nanotechnol.*, 5 (2010) 487.
- [3] GEIM A. K. and GRIGORIEVA I. V., *Nature*, **499** (2013) 419.
- [4] FANG H., CHUANG S., CHANG T. C., TAKEI K., TAKAHASHI T. and JAVEY A., *Nano Lett.*, **12** (2012) 3788; WANG H., YU L., LEE Y.-H., SHI Y., HSU A., CHIN M. L., LI L.-J., DUBEY M., KONG J. and PALACIOS T., *Nano Lett.*, **12** (2012) 4674; FUHRER M. S. and HONE J., *Nat. Nanotechnol.*, **8** (2013) 146.
- [5] LU H.-Z., YAO W., XIAO D. and SHEN S.-Q., Phys. Rev. Lett., 110 (2013) 016806.
- [6] LI X., ZHANG F. and NIU Q., Phys. Rev. Lett., 110 (2013) 066803.
- [7] ZHANG Q., YANG S. A., MI W., CHENG Y. and SCHWIN-GENSCHLÖGL U., Adv. Mater., 28 (2016) 959.
- [8] SPLENDIANI A., SUN L., ZHANG Y., LI T., KIM J., CHIM C.-Y., GALLI G. and WANG F., *Nano Lett.*, **10** (2010) 1271.
- [9] ELLIS J. K., LUCERO M. J. and SCUSERIA G. E., Appl. Phys. Lett., 99 (2011) 261908.
- [10] LEE H. S., MIN S.-W., CHANG Y.-G., PARK M. K., NAM T., KIM H., KIM J. H., RYU S. and IM S., Nano Lett., 12 (2012) 3695.
- [11] CAPPELLUTI E., ROLDÁN R., SILVA-GUILLÉN J. A., ORDEJÓN P. and GUINEA F., Phys. Rev. B, 88 (2013) 075409.
- [12] LI H., SHAO J., YAO D. and YANG G., ACS Appl. Mater. Interfaces, 6 (2014) 1759.

- [13] YOKOYOMA T., Phys. Rev. B, 87 (2013) 241409(R).
- [14] VARGIAMIDIS C. and VASILOPOULOS P., J. Appl. Phys., 117 (2015) 094305; Appl. Phys. Lett., 105 (2014) 223105.
- [15] MISSAULT N., VASILOPOULOS P., VARGIAMIDIS C., PEETERS F. M. and VAN DUPPEN B., *Phys. Rev. B*, 92 (2015) 195423.
- [16] JONES A. M., YU H., ROSS J. S., KLEMENT P., GHIMIRE N. J., YAN J., MANDRUS D. G., YAO W. and XU X., *Nat. Phys.*, **10** (2014) 130.
- [17] AIVAZIAN G., GONG Z., JONES A. M., CHU R.-L., YAN J., MANDRUS D. G., ZHANG C., COBDEN D., YAO W. and XU X., Nat. Phys., 11 (2015) 148.
- [18] SRIVASTAVA A., SIDLER M., ALLAIN A. V., LEMBKE D. S., KIS A. and IMAMOĞLU A., *Nat. Phys.*, **11** (2015) 141.
- [19] MOVVA H. C. P., RAI A., KANG S., KIM K., FALLAHAZAD B., TANIGUCHI T., WATANABE K., TUTUC E. and BANERJEE S. K., ACS Nano, 9 (2015) 10402.
- [20] ZHANG L., GONG K., CHEN J., LIU L., ZHU Y., XIAO D. and GUO H., *Phys. Rev. B*, **90** (2014) 195428.
- [21] OCHOA H., FINOCCHIARO F., GUINEA F. and FALKO V. I., Phys. Rev. B, 90 (2014) 235429.
- [22] BAI C., ZOU Y., LOU W.-K. and CHANG K., Phys. Rev. B, 90 (2014) 195445.
- [23] ZHAO C., NORDEN T., ZHAO P., CHENG Y., ZHANG P., SUN F., TAHERI P., WANG J., YANG Y., SCRACE T., KANG K., YANG S., MIAO G.-X., SABIRIANOV R., KIOSEOGLOU G., PETROU A. and ZENG H., arXiv:condmat/1610.04878 (2016).
- [24] CUI Q., CEBALLOS F., KUMAR N. and ZHAO H., ACS Nano, 8 (2014) 2970.