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Graphene quantum dot with a Coulomb impurity: Subcritical and supercritical regime
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We study the influence of confinement on the atomic collapse due to a Coulomb impurity placed at the center
of a graphene quantum dot of radius R. We apply the zigzag or infinite-mass boundary condition and consider
both a point-size and a finite-size impurity. As a function of the impurity strength Zα, the energy spectra are
discrete. In the case of the zigzag boundary condition, the degenerate (with respect to the angular momentum m)
zero-energy levels are pulled down in energy as Zα increases, and they remain below ε = −Zα. Our results show
that the energy levels exhibit a 1/R dependence in the subcritical regime [Zα < |km + 1/2|, k = 1 (−1) for the
K (K ′) valley]. In the supercritical regime (Zα > |km + 1/2|) we find a qualitatively very different behavior
where the levels decrease as a function of R in a nonmonotonic manner. While the valley symmetry is preserved
in the presence of the impurity, we find that the impurity breaks electron-hole symmetry. We further study the
energy spectrum of zigzag quantum dots in gapped graphene. Our results show that as the gap increases, the
lowest electron states are pushed into the gap by the impurity.
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I. INTRODUCTION

The atomic collapse with heavy nuclei, having a large
atomic number Z, is a well-studied problem in quantum
electrodynamics (QED). Solving the Dirac equation for an
atomic nucleus, treated as a point charge, gives the energy of
the 1S atomic bound state, E1S = me[1 − (Zα)2]1/2, where
me ≈ 511 keV is the electron rest mass and α ≈ 1/137 is the
fine-structure constant [1]. Beyond Zcα = 1, i.e., Zc ≈ 137,
the energy of the 1S state becomes imaginary. This collapses
the wave function and the bound state ceases to exist. However,
taking into account the finite size of the nucleus truncates the
Coulomb potential and removes the divergence. This extends
the stability of the 1S state up to a new critical value Zc ≈ 170
[1,2]. The range of stability Z < Zc is referred to as the
subcritical regime and that for Z > Zc as the supercritical
regime. In the latter, the electron state leaves the discrete
spectrum and tunnels into the positron continuum. That is, the
bound state acquires a finite lifetime and becomes a narrow
resonance [1,3]. This is referred to as the atomic collapse. A
stable nucleus with Z > 170, not found in nature, is possible to
realize, for a very short time, in high-energy collisions of very
heavy ions, but experiments with uranium atoms provided no
direct proof of the expected supercritical positron emission [4].

The difficulties mentioned above can be drastically al-
leviated in graphene in which the charge carriers (elec-
trons) are massless and exhibit relativistic behavior with the
speed of light replaced by the much smaller Fermi velocity
vF ≈ c/300. This leads to the same atomic collapse physics
of QED but at a much smaller energy scale and in two
dimensions. The effective fine-structure constant becomes
αg = c/vF κ ≈ 2.2/κ ≈ 1, where κ ≈ 2.5 is the dielectric
constant of graphene [5] with its three-dimensional (3D) envi-
ronment. Correspondingly, the critical charge Zc is expected to
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be much smaller, i.e., of the order of unity, and the energy scale
changes from MeV to sub-eV. Accordingly, charged impurities
in graphene could play the role of supercritical nuclei [6,7].
The recent observations of the expected resonances around
artificial nuclei [8] and the realization of tunable artificial
atoms at supercritically charged vacancies [9] in extended
graphene sheets confirmed the analog of the QED atomic
collapse and gave new impetus for further studies. Given that
graphene is experimentally accessible, one can further study
this analog of the atomic collapse by varying other parameters
such as back-gate voltage, defects, the influence of a magnetic
field, etc., and better understand confinement in graphene.

Motivated by these results on bulk graphene, we study
the influence of confinement on the atomic collapse by
placing a Coulomb impurity in a gapped or gapless graphene
quantum dot (QD), and we investigate how the usual bound
states induced by the dot are modified upon varying the
impurity strength. QDs in graphene have been the subject
of a considerable number of theoretical and experimental
studies [10–12]. QDs in monolayer graphene (MLG) have been
fabricated by direct etching of pristine graphene sheets into
small flakes [12]. In these structures, the shape and edges of
the sample can strongly influence the confined states [13]. The
electronic and transport properties of such QDs with different
shapes and edges have been investigated extensively [14–18].

Here we analytically solve the Dirac-Weyl equation for a
circular graphene QD in the presence of a Coulomb impurity
at its center. We consider QDs with both zigzag (ZZBCs)
and infinite-mass (IMBCs) boundary conditions. We notice
that a circular QD cut out of graphene has both armchair and
zigzag edges. However, in order to obtain analytical results
for the energy levels and to observe features brought about
by the zigzag edges in the spectrum, we enforce the zigzag
boundary condition. We further investigate the influence of a
mass potential on the spectrum with a ZZBC. We first treat the
Coulomb impurity as a point-size charge that gives solutions
only in the subcritical regime. Considering a finite-size
impurity (of the order of graphene’s lattice constant), we obtain
solutions in both the subcritical and supercritical regimes.
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The paper is organized as follows. In Sec. II we present
some general results for a dot without a Coulomb impurity
and for different boundary conditions. In Sec. III we present
our model of a point-size Coulomb impurity in the subcritical
regime and in Sec. IV that of a finite-size impurity in the
supercritical regime. The corresponding numerical results are
presented in Sec. V and our summary is given in Sec. VI.

II. CIRCULAR QUANTUM DOTS IN GRAPHENE

The general problem that we want to solve consists of a
quantum dot in gapped graphene in the presence of a Coulomb
impurity. The corresponding Hamiltonian is given by

H = −ih̄vF

(
kσ1

∂

∂x
+ σ2

∂

∂y

)
+ �σ3 + IV (r). (1)

Here σi , i = 1,2,3, are the Pauli matrices, V (r) = −Zα/r is
the impurity potential, Z is the atomic number, α = e2/4πε0,
and k = 1 (−1) denotes, respectively, the K and K ′ valleys.
Further, vF is the Fermi velocity, � = meffv

2
F is the band gap,

and I is the 2 × 2 identity matrix. The eigenvalues E and
eigenfunctions 	 are obtained from Schrödinger’s equation
H	 = E	. The two-component eigenfunctions are written
in the form 	 = (ψa,ψb)T , with T denoting the transpose,
due to the two sublattices of graphene.

We consider a circular quantum dot, of radius R, in line
with the radial symmetry of V (r). The impurity is placed at
the origin. Further, we introduce the dimensionless variables
ρ = r/R, ε = ER/h̄vF , δ = �R/h̄vF , and α = α0/h̄vF .
Then Eq. (1) leads to a set of coupled equations for the
components ψa,ψb, namely

(
ε − δ + Zα

ρ

)
ψa + e−ikθ

(
ik

∂

∂ρ
+ 1

ρ

∂

∂θ

)
ψb = 0, (2a)(

ε + δ + Zα

ρ

)
ψb + eikθ

(
ik

∂

∂ρ
− 1

ρ

∂

∂θ

)
ψa = 0. (2b)

A. Boundary conditions

Before solving the coupled set of Eqs. (2a) and (2b), it is
very important to specify the proper boundary conditions. To
do so, we know that for the Dirac Hamiltonian (1) the electron
current at a point ρ is given by

j(ρ,θ ) = (ψ∗
a ,ψ∗

b )(σx,σy)

(
ψa

ψb

)

= 2(Re[ψ∗
a (ρ,θ )ψb(ρ,θ )],Im [ψ∗

a (ρ,θ )ψb(ρ,θ )])T .

(3)

At the edge of the dot, we have ρ = 1 and the outward electron
current vanishes since electrons are confined inside the dot.
This condition can be written in terms of the normal n(θ ) at
the dot’s edge, n(θ ) = (cos θ, sin θ )T , shown in Fig. 1. Note
that n depends only on the angle θ . This is valid only for a
circular quantum dot. For a dot of another shape, this normal
will depend on the particular value of ρ at its edge.

FIG. 1. Schematics of a circular dot, of radius R, with an impurity
of radius r0 at the origin.

The boundary condition that the outward electron current
vanishes at the dot edge (ρ = 1) takes the form

j(1,θ ) · n(θ ) = 0. (4)

Using Eq. (3), this condition becomes

cos θ Re[ψ∗
a (1,θ )ψb(1,θ )] + sin θ Im [ψ∗

a (1,θ )ψb(1,θ )] = 0.

(5)
Equation (5) is satisfied for

ψa(1,θ ) = 0 or ψb(1,θ ) = 0. (6)

Equation (6) is called the ZZBC and corresponds physically
to a boundary with all missing carbon atoms belonging to the
same sublattice.

Equation (5) is also satisfied for [19]

ψb(1,θ ) = iCeiθψa(1,θ ), (7)

where C is a constant. To clearly see how this corresponds to
a physical situation, we assume gapless graphene and replace
� by a masslike potential M(r) in Eq. (1). The value C = 1
corresponds to the case M(r) = 0 inside the dot and M(r) →
∞ outside it. Equation (7) is called the IMBC, as was originally
proposed in Ref. [19]. The region outside the dot is forbidden
for electrons because they have then an infinite mass. This
holds for the K valley. For the K ′ valley, we have C = −1
with M(r) = 0 inside the dot and M(r) → −∞ outside it.
Thus, the IMBC distinguishes between the K and K ′ valleys.
Experimental realization of IMBC in graphene is challenging.
However, one can use graphene on top of a hexagonal boron
nitride (h-BN) substrate, which induces a staggered potential
in graphene that breaks the sublattice symmetry and opens an
energy gap [20–22].

B. Quantum dot states

The energy levels of circular graphene QDs in the absence
of a Coulomb impurity (Zα = 0) have been studied in Ref. [16]
even in the presence of a perpendicular magnetic field.
However, it is helpful to recall the wave functions and some
aspects of the energy levels in the case of zero magnetic field.
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Considering solutions with azimuthal symmetry, we attempt
them in the form ψa = Ra(ρ)eimθ , where the angular momen-
tum m can take the values 0,±1,±2, . . . . Then Eqs. (2a) and
(2b) take a simpler form. For |ε| > δ, the solutions of Eq. (2a)
are the Bessel functions Jm(εδ ρ) with εδ = (ε2 − δ2)1/2, so
that ψa = eimθJm(εδρ), and using Eq. (2b) we find ψb. The
end results for ψa and ψb are

ψa = N
√

|ε + δ|eimθJm(εδ ρ), (8a)

ψb = ±Ni
√

|ε − δ|ei(m+k)θJm+k(εδ ρ), (8b)

where N is a normalization constant. The + sign is for
ε > δ > 0 and the − sign for ε < −δ. Notice that the total
angular momentum operator Jz in graphene is given by the
sum of the orbital angular momentum Lz and a term describing
the pseudospin Jz = Lz + (h̄/2)σ3, so that the eigenvalues of
Jz become m + h̄/2.

Following the same procedure for |ε| < δ, the final solu-
tions are

ψa = N
√

ε + δ eimθ Im(−iεδ ρ), (9a)

ψb = −Nik
√

δ − ε ei(m+k)θ Im+k(−iεδ ρ). (9b)

Here Im denotes the modified Bessel function of order m.
When the gap vanishes, Eqs. (8a) and (8b) become

ψa = N
√

|ε|eimθJm(ερ), ψb = Ni
√

|ε|ei(m+k)θJm+k(ερ).
(10)

For QDs with the ZZBC, the solutions are bound only for
|ε| > δ and the energy levels can be determined from
ψa(1,θ ) = 0 or ψb(1,θ ) = 0, given in Eqs. (8a) and (8b),
depending on which atoms are at the edge of the dot [23].
This gives

Jm(εδ) = 0 or Jm+k(εδ) = 0. (11)

A few properties can be deduced from Eq. (11) using those
of the Bessel functions [24]. The intravalley symmetries for
electron (e) and hole (h) states are

ε
e,h
±1,a,m = ε

e,h
±1,a,−m, (12a)

εe
±1,i,m = −εh

±1,i,m, i = a,b, (12b)

Here, +1 (−1) denotes the K (K ′) valley, and a (b) refers
to sublattice ψa = 0 (ψb = 0) at the edge of the dot. We
emphasize that the spectra obtained from ψa(1,θ ) = 0 and
ψb(1,θ ) = 0 are exactly the same except that the m value is
shifted by ±1, i.e.,

ε
e,h
±1,a,m = ε

e,h
±1,b,−(m±1), (13)

and for nonzero δ, the condition ψa(1,θ ) = 0 gives degen-
erate states with ε = −δ (for m < 0) and ψb(1,θ ) = 0 gives
degenerate states with ε = δ (for m � 0).
The connection between the valleys is described by

ε
e,h
+1,i,m = ε

e,h
−1,i,−m, i = a,b, (14)

and it will become more clear later in this paper. The spectra
for the K and K ′ valleys are exactly the same, which can be
seen from Eq. (14).

Applying the IMBC (7) to the solutions (10) leads to Jm+1(ε) =
τJm(ε), where τ distinguishes between the two valleys.
Solving this equation will give the IMBC spectrum. In the case
of the ZZBC, we found that there are zero-energy degenerate
edge states [16]. This is not the case for the IMBC in which
the electron-hole, Eq. (12a), and intervalley, Eq. (14), relations
are not valid anymore. However, there are other relations that
can be derived [16],

εe
±1,m = −εh

±1,−(m+1), (15a)

ε
e,h
1,m = ε

e,h
−1,−(m+1). (15b)

III. ZERO-SIZE IMPURITY: SUBCRITICAL REGIME

We consider the case of a Coulomb impurity placed at
the center of the QD. Using the Hamiltonian (1), we obtain
analytical expressions for the wave functions for both zero-
and finite-mass term potential δ. We then apply the ZZBC for
δ = 0 and δ �= 0. The IMBC is applied only to the case δ = 0.

Using Eqs. (2a) and (2b) and considering the solutions

ψa = eimθRa(ρ), ψb = ikei(m+k)θRb(ρ), (16)

with m being the angular momentum label, we obtain(
∂

∂ρ
+ mk + 1

ρ

)
Rb(ρ) −

(
ε − δ + Zα

ρ

)
Ra(ρ) = 0, (17)

(
∂

∂ρ
− km

ρ

)
Ra(ρ) +

(
ε + δ + Zα

ρ

)
Rb(ρ) = 0. (18)

The key now is to decouple these equations. We discuss two
possible energy regimes: |ε| < δ and |ε| > δ.

(i) |ε| < δ. The equations can be decoupled using the ansatz
[25](

ψa

ψb

)
= eimθ− ρ∗

2 ρ
ν− 1

2∗

( √
δ + ε (P + Q)

ikeiθ
√

δ − ε (P − Q)

)
, (19)

where ρ∗ = 2γρ, ν = [(km + 1/2)2 − (Zα)]1/2, and γ =
[δ2 − ε2]1/2. Then setting ωγ = Zαε/γ , the resulting equa-
tions for P and Q are of the form

x
∂2f (x)

∂ρ2∗
+ (b − x)

∂f (x)

∂ρ∗
− af (x) = 0; (20)

here b = 1 + 2ν for P and Q, while a = ν − ωγ for P and
a = 1 + ν − ωγ for Q.

Equation (20) has two linear independent solutions, namely
the hypergeometric functions

1F1(a,b,x), x1−b
1F1(a − b + 1,2 − b,x). (21)

The solution x1−b
1F1(a − b + 1,2 − b,x) is singular at the

origin for b real and will be discarded. Accordingly, the
solutions for P and Q are

P (ρ∗) = A1F1
(
ν − ωγ ,1 + 2ν,ρ∗

)
, (22a)

Q(ρ∗) = B 1F1
(
1 + ν − ωγ ,1 + 2ν,ρ∗

)
. (22b)

It can be shown that the constants A and B are related [26],

A

B
= j + ηγ

ν − ωγ

= ν + ωγ

j − ηγ

, (23)
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FIG. 2. Analytic continuation in the energy domain. Note that
only the phase is shown.

where j = km + 1/2 and ηγ = Zαδ/γ . Using Eq. (23) and the
exact form of P and Q, we can determine the wave functions

ψa = N
√

δ + εei(j−1/2)θ e−γρ(2γρ)ν−1/2

× [(j + ηγ )1F1(ν − ωγ ,1 + 2ν,2γρ)

+(ν − ωγ )1F1(1 + ν − ωγ ,1 + 2ν,2γρ)], (24a)

ψb = ikN
√

δ − εei(j+1/2)θ e−γρ(2γρ)ν−1/2

×[(j + ηγ )1F1(ν − ωγ ,1 + 2ν,2γρ)

−(ν − ωγ )1F1(1 + ν − ωγ ,1 + 2ν,2γρ)]. (24b)

N is a normalization constant, and j = ±1/2,±3/2, . . . .
Note that the above solutions are valid only for ν real (i.e.,
Zα � |j |). The onset value of Zα, for which ν becomes
imaginary, is obtained by setting j = ±1/2. Accordingly, we
enter the supercritical regime for Zα > 1/2.

Applying the ZZBC to the solutions (24a) and (24b) gives
the following equations, respectively, for ψa(1,θ ) = 0 and
ψb(1,θ ) = 0:

(j + ηγ )1F1(ν − ωγ ,1 + 2ν,2γ )

+(ν − ωγ )1F1(1 + ν − ωγ ,1 + 2ν,2γ ) = 0, (25a)

(j + ηγ

)
1F1(ν − ωγ ,1 + 2ν,2γ )

−(ν − ωγ )1F1(1 + ν − ωγ ,1 + 2ν,2γ ) = 0. (25b)

The roots of these equations give the energy spectrum.
(ii) |ε| > δ. This pertains to energies above the band gap.

Without confinement, the spectrum is continuous. Due to the
confinement by the QD, it becomes discrete. To determine
the wave functions and then the spectrum via the ZZBC and
IMBC, we perform an analytic continuation in the energy
domain [26]. Consider the complex plane of ε (see Fig. 2)
with the branch cuts along the real axis connecting the points

ε = ±δ with infinity. The states on the branch cuts correspond
to the continuous spectrum, while the real poles in the interval
−δ < ε < δ correspond to bound states.

Explicitly, the analytic continuation is embodied in the
relations

√
δ − ε → −i

√
|ε − δ|, √

δ + ε →
√

|ε + δ|, ε > δ,

(26a)
√

δ − ε →
√

|ε − δ|, √
δ + ε → −i

√
|ε + δ|, ε < −δ.

(26b)

Applying these transformations to Eqs. (24a) and (24b)
gives the wave functions

ψa = N ′√|δ + ε|ei(j−1/2)θ eiβρρν−1/2

× [(j + iηβ)1F1(ν − iωβ,1 + 2ν,−2iβρ)

+(ν − iωβ)1F1(1 + ν − iωβ1 + 2ν,−2iβρ)],

(27a)

ψb = ±kN ′√|ε − δ|ei(j−1/2)θ eiβρρν−1/2

× [(j + iηβ)1F1(ν − iωβ1 + 2ν,−2iβρ)

−(ν − iωβ)1F1(1 + ν − iωβ,1 + 2ν,−2iβρ)],

(27b)

where β = [ε2 − δ2]1/2, ωβ is given by Zαε/β, and N ′ =
N (2iβ)ν−1/2. The + (−) sign is for ε > δ (ε < −δ).

Applying the ZZBC to the above solutions leads to
Eqs. (25a) and (25b) with the changes γ → −iβ, ηγ → iηβ ,
and ωγ → iωβ .

(iii) δ = 0. This is the case of gapless graphene. The wave
functions can be simply obtained by putting δ = 0 in Eqs. (27a)
and (27b). The results are

ψa = N ′ei(j− 1
2 )θ ei|ε|ρρν− 1

2

×[j 1F1(ν − Z̄,1 + 2ν,−2i|ε|ρ) + (ν − Z̄)

×1F1(1 + ν − Z̄,1 + 2ν,−2i|ε|ρ)], (28a)

ψb = kN ′ei(j+ 1
2 )θ ei|ε|ρρν− 1

2

×[j 1F1(ν − Z̄,1 + 2ν,−2i|ε|ρ) − (ν − Z̄)

×1F1(1 + ν − Z̄,1 + 2ν,−2i|ε|ρ)], (28b)

where Z̄ = iZα sgn(ε). We use the ZZBC by setting
ψa(1,θ ) = 0 or ψb(1,θ ) = 0 for δ = 0. The change ε → −ε in
Eqs. (28a) and (28b) results in different equations and shows
that the electron-hole symmetry is broken, i.e.,

εe
±,i,m �= −εh

±,i,m, i = a,b. (29)

Equations (28a) and (28b) can be transformed into one another
by j → −j ,

ε
e,h
±1,a,j = ε

e,h
±1,b,−j . (30)

This indicates that having A or B sublattices at the edge of
the QD changes the angular momentum label m while the
whole spectrum remains invariant. This is the same as in
the absence of a Coulomb impurity (see Ref. [16]) in which the
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intervalley relationship

ε
e,h
+1,i,m = ε

e,h
−1,i,−m, i = a,b (31)

holds. It is readily seen that this relation is satisfied because
j = km + 1/2 and the changes k → −k and m → −m leave
the equations invariant.

For δ = 0 we also consider the IMBC, Eq. (7). Applying
it to Eqs. (28a) and (28b) leads to the following equation that
determines the energy spectrum:

(1 ∓ iτ )j 1F1(ν − Z̄,1 + 2ν,−2i|ε|)
−(1 ± iτ )(ν − Z̄)1F1(1 + ν − Z̄,1 + 2ν,−2i|ε|) = 0;

(32)

the combination (−,+) is used for ε > δ and (+,−) is used
for ε < δ. The IMBC spectrum is invariant upon making
the changes j → −j and τ → −τ . This corresponds to the
intervalley relation Eq. (31) derived from the ZZBC.

In the limit ρ → 0, the behavior of the wave functions (28a)
and (28b) at the origin is given by

Ra(ρ) ∼ Rb(ρ) ∼ ρν−1/2. (33)

But when ν becomes imaginary, the factor ρν−1/2 oscillates
strongly, i.e., ei|ν| ln (ρ)−1/2, and the oscillation frequency
increases as the origin is approached [10]. This makes the wave
functions not normalizable. Thus, the problem of a Coulomb
impurity is ill-defined in the supercritical regime Zα > 1/2.
The reason for that is the singularity of the Coulomb potential
V (ρ) = −Zα/ρ for ρ → 0. This singularity can be removed
by assuming a finite-size impurity.

IV. FINITE-SIZE IMPURITY: SUPERCRITICAL REGIME

As discussed above, the Dirac equation, with a pure
Coulomb potential, can be solved in the subcritical regime,
Zα � 1/2, for all energy levels. For Zα > 1/2 we are in the
supercritical regime. In this regime, the problem is ill-defined
because of the singular behavior of the Coulomb potential at
the origin. This singularity can be removed by putting the
impurity above the graphene sheet or by taking into account
the discrete nature of the graphene lattice. Here we assume that
the impurity has a finite size r0, which we take to be equal to
the graphene lattice constant. This provides the extra boundary
condition that is necessary for solving the problem. Explicitly,
we assume the impurity potential

V (ρ) =
{−Zα/ρ0, ρ < ρ0,

−Zα/ρ, ρ > ρ0,
(34)

where ρ0 = r0/R (see Fig. 1). The Dirac equation will now be
solved for ρ < ρ0 and ρ > ρ0 separately and the solutions
will be matched at ρ = ρ0. We take ρ0 = a/R � 1, with
a ≈ 0.14 nm the graphene lattice constant.

Inside the impurity, i.e., for ρ < ρ0, we simply replace the
term Zα/ρ by Zα/ρ0 in Eqs. (2a) and (2b). The corresponding
solutions are the same as those in Sec. II A with ε replaced by
ε + Zα/ρ0.

For ρ > ρ0, we proceed as in Sec. III but with an important
difference: we now include both solutions, the one that is
regular at the origin and the one that is singular at it since the

origin is excluded. This latter solution was discarded in the
subcritical regime.

The solutions for P (ρ) and Q(ρ) when |ε| < δ are

P (ρ) = A1F1(ν − ωγ ,1 + 2ν,2γρ)

+B(2γρ)−2ν
1F1(−ν − ωγ ,1 − 2ν,2γρ) (35a)

and

Q(ρ) = C1F1(1 + ν − ωγ ,1 + 2ν,2γρ)

+D(2γρ)−2ν
1F1(1 − ν − ωγ ,1 − 2ν,2γρ).

(35b)

Note that ν = [(km + 1/2)2 − (Zα)2]1/2 is purely imaginary
in the supercritical regime. We have four constants in
Eqs. (35a) and (35b) that we can reduce to two by plugging the
results back into the original equation; this gives the relations

C

A
= ν − ωγ

j + ηγ

,
D

B
= −ν + ωγ

j + ηγ

. (36)

For the solutions in the region |ε| > δ, we simply make
the substitution γ → −iβ, ωγ → iωβ , and ηγ → iηβ in
Eqs. (35a) and (35b).

In the gapless case (δ = 0), the equations outside the
impurity are obtained by putting ωβ = Zα sgn(ε), ηβ = 0, and
β = |ε| in the solutions for the |ε| > δ case [given by Eq. (35a)
and (35b)].

For ρ > ρ0 we have two unknowns, A and B. Matching the
wave functions at ρ0 gives the relations ψi

a = ψo
a and ψi

b = ψo
b ,

where i (o) label the solutions inside (outside) the impurity.
This leads to

ψi
a

ψi
b

= ψo
a

ψo
b

, (37)

and, together with Eq. (36), it relates A to B. Inside the
impurity, the solutions are

ψi
a(ρ,θ ) = eimθJm[(ε + Zα/ρ0)ρ],

ψi
b(ρ,θ ) = iei(m+k)θJm+k[(ε + Zα/ρ0)ρ]. (38)

Now we will use Eq. (37), the fact that the impurity size is
very small, ρ0 << 1, and the approximation 1F1(a,b,z) ≈ 1,
z << 1, for ρ > ρ0. Then P and Q take the simpler form

P (ρ) = j [A + B(−2i|ε|ρ)−2ν], (39a)

Q(ρ) = A(ν − Z̄) + B(−ν − Z̄)(−2i|ε|ρ)−2ν . (39b)

Then matching at ρ0 gives

B

A
= (−2i|ε|ρ0)2ν (C1k − C2)j − (C1k + C2)(ν − Z̄)

(C2 − C1k)j + (C1k + C2)(−ν − Z̄)
,

(40)

where C1 = ±Jm[(ε + Zα/ρ0)ρ0] and C2 = iJm+k[(ε +
Zα/ρ0)ρ0].

For δ �= 0 the relation between A and B can be obtained
in a completely analogous way. Outside the impurity we need
to consider two cases: |ε| > δ and |ε| < δ. For the solutions
inside the impurity, in principle, there are also two cases to
consider: |ε + Zα/ρ0| > δ and |ε + Zα/ρ0| < δ. But the size
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of the impurity ρ0 is very small compared to that of the dot
because Zα/ρ0 is very large. Thus inside the impurity we only
need to look at the case ε + Zα/ρ0 > δ. For |ε| < δ, we obtain

B

A
= (2γρ0)2ν (D1k − D2)(j + ηγ ) − (D1k + D2)(ν − ωγ )

(D2 − D1k)(j + ηγ ) − (D1k + D2)(ν + ωγ )
,

(41)

where D1 = √|ε − δ|Jm([(ε + Zα/ρ0)2 − δ2]1/2
ρ0) and

D2 = √|ε + δ|Jm+k([(ε + Zα/ρ0)2 − δ2]1/2
ρ0).

In the range |ε| > δ, the ratio B/A is obtained after the
substitutions γ → −iβ, ωγ → iωβ , ηγ → iηβ , D1 → ±D1

(where the + sign is for ε > δ and the − sign is for ε < −δ),
and D2 → iD2 in Eq. (41). Having determined all constants,
we can impose the IMBC and ZZBC at the edge of the dot.

(i) ZZBC, δ = 0. We apply the ZZBC ψa(1,θ ) = 0 [note
that ψa(1,θ ) = 0 and ψb(1,θ ) = 0 give the same results]. ψa

is obtained by inserting Eqs. (35a) and (35b) in Eq. (19). Then
using Eq. (40) we obtain the spectrum in the subcritical and
supercritical regime by finding the zeros of the equation

j [1F1(ν − Z̄,1 + 2ν,−2i|ε|)
+B1F1(−ν − Z̄,1 − 2ν,−2i|ε|)]
+(ν − Z̄)1F1(1 + ν − Z̄,1 + 2ν,−2i|ε|)
+B

(−ν − Z̄
)

1F1(1 − ν − Z̄,1 − 2ν,−2i|ε|) = 0, (42)

where B is given by

B = −ρ2ν
0

(C1k − C2)j − (C1k + C2)(ν − Z̄)

(C1k − C2)j + (C1k + C2)(ν + Z̄)
. (43)

In the subcritical regime (Zα < 1/2), ν is real for all m values,
and since ρ0 is very small, B will also be very small. Because
of this, Eq. (42) will reduce to that for a point-size nucleus,
Eq. (25a), with δ = 0.

(ii) IMBC, δ = 0. As stated before, we will consider only
gapless graphene. Using the wave functions Eqs. (35a) and
(35b) and imposing the IMBC leads to the equation

(1 ∓ iτ )j [1F1(ν − Z̄,1 + 2ν,−2i|ε|)
+B1F1(−ν − Z̄,1 − 2ν,−2i|ε|)]
−(ν − Z̄)(1 ± iτ )1F1(1 + ν − Z̄,1 + 2ν,−2i|ε|)

= −(ν + Z̄)(1 ± iτ )B1F1(1 − ν − Z̄,1 − 2ν,−2i|ε|).
(44)

B is again given by Eq. (43). It is readily seen that Eq. (44)
reduces to Eq. (32) in the subcritical regime because ν becomes
real and ρ0 � 1.

The solutions of Eqs. (42) and (44) result in real energies.
However, in the limit of R → ∞, i.e., the case of a graphene
sheet, ρ0 = r0/R → 0 and B → 0 and these solutions give
complex energies.

(iii) ZZBC, δ �= 0. For |ε| < δ we use the wave functions
Eqs. (35a), (35b), and (41). With this and ψa(1,θ ) = 0 we get

(j + ηγ )[1F1(ν − ωγ ,1 + 2ν,2γ )

+D1F1(−ν − ωγ ,1 − 2ν,2γ )]

+(ν − ωγ )1F1(1 + ν − ωγ ,1 + 2ν,2γ )

+D(−ν − ωγ )1F1(1 − ν − ωγ ,1 − 2ν,2γ ) = 0. (45)

If we set ψb(1,θ ) = 0, we obtain Eq. (45) with the opposite
sign at the start of the last two lines. In both cases, D is given
by

D = −ρ2ν
0

(D1k − D2)(j + ηγ ) − (D2 + D1k)(ν − ωγ )

(D1k − D2)(j + ηγ ) + (D2 + D1k)(ν + ωγ )
. (46)

The results for |ε| > δ can be obtained by making the changes
γ → −iβ, ωγ → iωβ , ηγ → iηβ , D1 → ±D1 (where the +
sign is for ε > δ and the − sign is for ε < −δ), and D2 → iD2

in Eqs. (45) and (46).

V. NUMERICAL RESULTS

Below we present the results obtained by numerically
solving the different equations determining the energy spectra
given in Secs. III and IV.

A. Zigzag boundary conditions

Figure 3(a) shows the spectrum as a function of the
impurity strength Zα for a QD with ZZBC and δ = 0 for
the three angular momentum labels m = 0,1,−1. The dashed
curves are for a point-size impurity and the solid ones for a
finite-size impurity. The dot radius is R = 70 nm and that of
the finite-size impurity r0 is taken equal to the graphene lattice
constant ρ0 = 0.142 nm. The vertical gray line at Zα = 0.5
marks the critical impurity strength Zα = 1/2, i.e., the value
for m = 0,−1, at which the supercritical regime starts. The
spectrum is plotted only for the K valley since valley symmetry
is preserved in the presence of the impurity. If there is no
impurity, the energy spectrum exhibits degenerate zero-energy
states for the quantum numbers m < 0 (for k = 1). These states
are the edge states brought about by the ZZBC. To study the
dependence of the edge states on the impurity strength, we
show in Fig. 3(b) the edge states corresponding to all angular
momentum labels. As Zα increases, they are pulled downward
by the impurity, almost forming an energy band, and the ones
with the highest m allowed always remain below the line
ε = −Zα in both the subcritical and supercritical regimes.
This is proven analytically in the Appendix by substituting
ε = −Zα in Eq. (28a) and verifying that ψa(1,θ ) = 0 in the
limit j → −∞. As the impurity strength increases, the states
that enter the supercritical regime (Zα > |km + 1/2|) start
to detach themselves from the band rather abruptly. We note
that the zero-energy level corresponds to the Fermi energy EF

when the charge in the system is zero. Adding the charge Zα

to the system makes EF move as EF = −Zα to preserve its
charge neutrality. In the inset of Fig. 3(b) we have compared
the probability densities corresponding to the edge state with
m = −2 in the subcritical regime (Zα = 1) with that in the
supercritical regime (with Zα = 1.7). One can see that the
edge state is not very affected by the impurity subcritical
regime and therefore is more localized at the edge of the dot.
However, in the supercritical regime the probability density
exhibits a sharp peak around the impurity, changing the edge
state into an impurity state.

The point-size impurity gives sensible solutions only
for Zα < |km + 1/2| (subcritical regime), which coincide
with those obtained using a finite size-impurity. The latter
model gives solutions in both the subcritical and supercritical
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FIG. 3. (a) Energy spectrum for a dot, of radius R = 70 nm, with
a Coulomb impurity and the ZZBC, vs its strength Zα (the spectrum
is symmetric with respect to the K and K ′ valleys). The dashed curves
are for a point impurity and the solid ones for a finite-size impurity
of radius equal to the lattice parameter (ρ0 = 0.142 nm). The angular
momentum numbers are m = 0 (blue), m = 1 (green), and m = −1
(red). (b) The edge states that start at ε = 0 vs the strength Zα.
The ones with the highest m allowed always remain below the line
ε = −Zα. In the inset the probability density at the points (5) and
(6) is shown. (c) Probability density vs ρ for the points labeled by
(1)–(4) in (a).

regimes. As we enter the supercritical (Zα > |km + 1/2|)
regime (e.g., Zα > 1/2 for m = 0,−1 and Zα > 3/2 for
m = 1,−2), the energy levels start to display atomic collapse:
(i) for each m the lowest electron state turns into a hole state,
and (ii) the spectrum shows anticrossings between the energy
levels with the same m resulting from the oscillating wave
functions in the supercritical regime. In Fig. 3(c) we show the
probability densities corresponding to the energies labeled by
(1)–(4) in the spectrum of Fig. 3(a). When the strength Zα
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FIG. 4. Energy levels as functions of the dot radius R for the
ZZBC with m = 0 (blue), m = 1 (green), m = −1 (red), m = 2
(gray), and m = −2 (magenta). The value of Zα is 0 in (a), 0.25
in (b), and 1 in (c).

increases, the electron gets closer to the impurity and its wave
function exhibits oscillatory behavior; see curves (3) and (4).
The fact that the electron comes closer to the impurity is a
typical sign of atomic collapse.

In Fig. 4 the dependence on the dot radius R of the m = 0,

±1,±2 states is shown. In the absence of impurity, Fig. 4(a),
the energy levels exhibit a 1/R dependence. This depen-
dency holds in the subcritical regime [e.g., Fig. 4(b) for
Zα = 0.25] for both the bulk and those of the edges states with
m = −1,−2, which are separated from the zero-energy levels
in the case of Zα = 0; see the discussion for Fig. 2(b). In the
supercritical regime, Fig. 4(c), the states start to deviate from
the 1/R behavior. To better understand the size dependence
of the energy levels in Figs. 5(a) and 5(b), we follow the R

dependence of the lowest electron states (in the subcritical
regime) with m = 0 and 1, respectively, for different Zα from
the subcritical to the supercritical regime [the states labeled
by (1)–(4) in Fig. 3(a)]. The results are shown in Fig. 5(a).
We find that the energy levels show a 1/R dependence in the
supercritical regime (note that energies are plotted in units
of h̄vF /R). The red curve is for Zα = 1/2 and marks the
boundary between the subcritical and supercritical regime.
In the supercritical regime Zα > 1/2, the 1/R dependence
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FIG. 5. (a) The lowest m = 0 electron state (in subcritical regime)
as a function of R for different Zα from the subcritical to supercritical
regime. (b) The same as in (a) but now for m = 1.
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FIG. 6. Energy levels as functions of the angular momentum
number m for a dot with the ZZBC and R = 70 nm. The impurity
strength Zα is 0 in (a), 0.25 in (b), and 1 in (c).

breaks down and the levels decrease nonmonotonically as a
function of R. This can be explained from Eq. (43), which
contains the factor ρ2ν

0 with ν imaginary for Zα > |km + 1/2|,
and it results in an oscillating function. In Fig. 5(b), we follow
the lowest electron state (at Zα = 0) with m = 1 from the
subcritical to the supercritical regime, and we show its R

dependence for different Zα values. The lowest m = 1 state
enters into the supercritical regime when Zα > 3/2. Although
in the subcritical regime (Zα < 3/2) the levels exhibit a 1/R

dependence, i.e., the same as Fig. 5(a), in the supercritical
regime the levels decrease with R more abruptly compared to
the case of m = 0. This can be linked to the larger strength of
the Coulomb interaction in the supercritical regime compared
to the m = 0 state, where we enter into the supercritical regime
for Zα > 1/2.

In Fig. 6, the dependence of the levels on the angular
momentum label m is shown for a QD with R = 70 nm
and Zα = 0,0.25,1. Due to the ZZBC, the energy levels for
m �= 0, except the zero energy levels, are doubly degenerate,
εe,h
m = ε

e,h
−m for Zα = 0 [see Fig. 6(a)]. This degeneracy is

broken by the impurity, and the resulting spectrum depends
more strongly on m as the impurity strength increases; see
Figs. 6(b) and 6(c). As Zα increases, the degeneracy of the
edge states (with m < 0) is partially lifted, starting from the
lowest m states, while the other levels remain degenerate with
ε = −Zα. Once an edge state enters the supercritical regime,
it deviates sharply from the other edge states (notice the energy
of the m = −1 state at Zα = 0.25 < 1/2 and Zα = 1 > 1/2).

In Fig. 7, we show the dependence of the energy levels of a
QD with a ZZBC, obtained from ψa(1,θ ) = 0, in the presence
of the induced mass potential δ. When no charge is present,
none of the states will dive below the gap line (ε = δ). Adding
an impurity will cause some states to be pushed inside the
gap, and increasing its strength will push more levels inside it.
Unlike the case δ = 0, in which the electron states enter the
holes’ space only in the supercritical regime, for δ �= 0 electron
states are pushed into the gap even in the subcritical regime;
see Fig. 7(b), where the lowest m = 0 state enters the gap at
δ � 3. For large δ, the levels depend nearly linearly on the gap.
The edge states for δ �= 0 have now the energy ε = −δ, they
are pulled downward by the impurity, and they remain below
the line ε = −δ − Zα.
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FIG. 7. Energy levels vs the mass potential term δ for the ZZBC.
The impurity strength Zα is 0 in (a), 0.25 in (b), and 1 in (c). The
color code is that of Fig. 4.

B. Infinite-mass boundary conditions

Here we present the results for a circular graphene QD
with the IMBC given by Eq. (7). The spectrum as a function
of the impurity size (Zα) is shown in Fig. 8(a) for angular
momentum numbers m = 0,1,−1. The spectrum is obtained
using the point-size (in the subcritical regime) and finite-
size nucleus (in both subcritical and supercritical regimes).
Unlike the ZZBC, with an IMBC there are no zero-energy
states (edge states) in the spectrum. Similar to our results
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FIG. 8. The same as Fig. 3 but now with the IMBC.
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FIG. 9. The same as Fig. 4 but now with the IMBC.

for QDs with ZZBC, both point-size and finite-size models
agree quite well in the subcritical regime. Figure 8(b) shows
the probability densities corresponding to the energy points
labeled by (1)–(4) in Fig. 8(a). In the supercritical regime,
there are again oscillations, as in the ZZBC case, that increase
in frequency with increasing charge, and the electrons are
pushed closer to the impurity. The wave functions (35) contain

the factor ρ−2i
√

(Zα)2−j 2
in the supercritical regime, which can

be rewritten as e−2i
√

(Zα)2−j 2 log ρ . This indicates that the wave
functions oscillate more around the impurity (ρ = 0) when
the charge is increased, as shown in Fig. 8(b). Comparing
the spectrum of the ZZBC [Fig. 3(a)] to that of the IMBC
[Fig. 8(a)], one can see that both spectra start to resemble
each other when the strength of the impurity increases because
when the electrons get closer to the impurity, the influence of
the edges is weakened.

The energy levels as a function of the dot radius R are
shown in Fig. 9 for the IMBC and for Zα = 0,0.25,0.5 in
panels (a), (b), and (c), respectively. The plots are for |m| � 2.
In contrast to the ZZBC, there is no zero-energy level in the
absence of the impurity, and the spectrum shows different
symmetries with respect to the angular momentum when the
impurity is present. However, the overall R dependence of the
energy levels is similar to that for the ZZBC (see Fig. 9): In
the subcritical regime, the levels exhibit a 1/R dependence and
start to deviate from this in the supercritical regime decreasing
nonmonotonically as a function of R. The overall behavior is
the same as in the case of the ZZBC shown in Fig. 5.

The angular dependence of the energy levels is shown in
Fig. 10. The IMBC implies different symmetries from those for
the ZZBC. The symmetries εe(h)

m = ε
e(h)
−m and εe

m = −εh
m, for the

levels with ε �= 0, are no longer present in the IMBC spectrum
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FIG. 10. The same as Fig. 4 but now with the IMBC.

without impurity. However, the energy levels display the
symmetry εe

m = εh
−(m+1), m �= 0 [Eq. (15a)], which is broken

by the impurity. The lowest electron state in the subcritical
regime is for m = 0 for both ZZBC and IMBC. However, the
lowest hole state of the dot with IMBC is for m = −1 and for
the ZZBC it is associated with the degenerate εh

m<0 = −Zα

states.

VI. SUMMARY

We studied the problem of a Coulomb charge at the center
of a circular graphene QD with a ZZBC or IMBC. Within
a continuum approach, we considered both a point-size and
a finite-size impurity, obtained analytical expressions for the
wave functions, and derived expressions for the energies. The
main difference between the system of a charged impurity in
a graphene QD and in bulk graphene is that in bulk graphene
the atomic collapse manifests itself as resonances associated
with the quasibound states (having a finite lifetime), while
in a QD an impurity can only influence the localized bound
states due to confinement. Due to the confinement of carriers
in a finite-size QD, we found discrete real energy states
in both the subcritical (Zα < |km + 1/2|) and supercritical
(Zα > |km + 1/2|) regimes, with k = ±1 distinguishing the
K and K ′ valleys and m the angular momentum label. This
is in contrast with the case of a Coulomb impurity in a
bulk graphene sheet where the eigenvalues are complex in
the supercritical regime. However, we found that the wave
functions start to oscillate near the Coulomb impurity in the
supercritical regime, indicating atomic collapse in graphene
QDs. In this regime, the lowest electron state for each m turns
into a hole state, and the spectrum shows anticrossings between
the energy levels. In the presence of a mass term δ, the lowest
electron states can enter into the gap as δ increases even in the
subcritical regime.

We showed that the degeneracy of the edge states, with
ε = 0, for QDs with the ZZBC is lifted by the impurity, the
states almost form an energy band, and the ones with the
highest allowed m always remain below the line ε = −Zα.
While in the presence of an impurity the valley symmetry
is preserved, we find that the impurity breaks electron-hole
symmetry. We further demonstrated that the energy levels have
a 1/R dependence in the subcritical regime. This dependence
no longer exists in the supercritical regime, and the levels
decrease as a function of R in a nonmonotonic manner,
showing the signature of atomic collapse in graphene QDs.
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APPENDIX

We start with Eq. (28a) and look at ψa(1,θ ) = 0 when
ε = −Zα and check if the equation is satisfied in the limit j →
−∞. In the limit j → −∞, we can replace ν =

√
j 2 − (Zα)2
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by |j | in Eq. (28a). With Z̃ = i|Zα|, this gives

−|j |1F1(|j | + Z̃,1 + 2|j |,−2Z̃)

+ (|j | + Z̃)1F1(1 + |j | + Z̃,1 + 2|j |,−2Z̃) = 0. (A1)

Using the relation 1F1(a,b,z) − 1F1(a − 1,b,z) =
(z/b)1F1(a,b + 1,z), we can rewrite the terms with the
prefactor |j | of Eq. (A1) as

− [|j |/(1 + 2|j |)]Z̃1F1(1 + |j | + Z̃,2 + 2|j |,−2Z̃). (A2)

Putting this result back in Eq. (A1), we have

[Z̃1F1(1 + Z̃ + |j |,1 + 2|j |,−2Z̃) − [|j |/(1 + 2|j |)]
× 2Z̃1F1(1 + Z̃ + |j |,2 + 2|j |,−2Z̃)] = 0. (A3)

Using the series expansion 1F1(a,b,z) = 1 + (a/b)z +
[a(a + 1)/b(b + 1)2!]z2 + · · · , the confluent hypergeometric

functions in Eq. (A3) can be written as

1F1(1 + Z̃ + |j |,1 + 2|j |,−2Z̃)

= 1 − (1 + Z̃ + |j |)
1 + 2|j |

×
[

2Z̃ − (1 + Z̄ + |j |)(2 + Z̃ + |j |)4Z̃2

(2 + 2|j |)2!
+ · · ·

]
,

(A4)

and in the limit j → −∞ they simplify to

1F1(1 + Z̃ + |j |,1 + 2|j |,−2Z̃)

= 1 − Z̃ + Z̄2/2! − Z̃3/3! + · · · = e−Z̃ . (A5)

Now inserting 1F1 = e−Z̃ in Eq. (A3) and considering |j |/(1 +
2|j |) → 1/2, one can see that in the limit j → −∞ the left
side of Eq. (A3) vanishes.
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