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1. Introduction

Black phosphorus has attracted great attention during recent 
years due to its interesting physical properties and its great 
potential for electronic and optical device applications [1, 2]. 
Phosphorene is a monolayer of black phosphorus [3] exhibiting 
a direct band gap of 2.0 eV [4] and large anisotropic mobility 
[5]. Unlike graphene, phosphorene is a semiconductor, and 
unlike 2D transition-metal dichalcogenides [6], which are 
semiconductors too, phosphorene is distinctly anisotropic due 
to its puckered atomic structure. Many experimental works 
are devoted to its material growth, its physical property char-
acterization, and the device exploration [1, 2, 7, 8]. There is 
also a considerable amount of theoretical investigations that 

concern its electronic band structure [9], Landau levels (LLs) 
in it, its anisotropic optical properties [10, 11], plasmons [12], 
topological and edge states [13], strain-induced topological 
phase trans itions [15], anisotropic composite fermions [14], 
electron-substrate phonon coupling [16], and tuning of its 
band gap by an electric field [17].

Further, several studies of the electronic properties of few-
layer phosphorous in the presence of a magnetic field have 
been carried out [9, 11, 18, 19] and indicate that the LLs of the 
monolayer linearly depend on the magnetic field and the LL 
index n. They also indicate that the LL dependence on the index 
n is different between monolayer and multilayer phosphorus. 
In addition, the quantum Hall effect and the Shubnikov–de 
Haas (SdH) oscillations have been experimentally observed in 
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Abstract
The recent experimental realization of high-quality phosphorene leads to novel electronic 
and optical properties with possible new device applications due to its huge direct band 
gap. We study the commensurability or Weiss oscillations in monolayer phosphorene in 
the presence of a weak perpendicular magnetic field B and a weak and periodic, electric or 
magnetic one-dimensional modulation. Either modulation broadens the Landau levels into 
bands, whose width oscillates with B, and the oscillations appear in the electrical conductivity 
perpendicular to the modulation taken along the direction (x) of the smaller effective mass. 
Compared with the oscillations of the diffusive conductivity in a two-dimensional electron 
gas (2DEG) for typical electron densities ne ∼ 1015 m−2, the ones in phosphorene, with 
typical ne ∼ 1016 m−2, have approximately similar height but a period significantly smaller 
when plotted versus 1/B while plotted versus B they occur at significantly higher fields. The 
Shubnikov–de Haas oscillations exhibit a similar behaviour. When the modulation is taken 
along the direction ( y ) of the larger effective mass, the oscillation period is close to that of 
a 2DEG. For equal modulation strengths the bandwidth due to a magnetic modulation is one 
order of magnitude larger than that due to an electric one and the amplitude of the oscillations 
in the diffusive conductivity about 50 times larger. Numerical results are presented for 
experimentally relevant parameters.
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phosphorene [20]. It is interesting to note that the monolayer 
black phosphorus may provide an alternative 2D electronic 
system to study the interplay between the anisotropy and the 
perpendicular magnetic field. However, to the best of our 
knowledge, the types of novel effects in the energy band struc-
ture and related magnetotransport properties of black phos-
phorus in the presence of a periodically modulated potential 
[21] have not yet been considered.

A conventional 2DEG, e.g. a GaAs-based one, subjected to 
a one-dimensional (1D) periodic potential and a weak magn-
etic field B shows very strong oscillations periodic in 1/B that 
are different from the SdH ones [22]. These commensurability 
or Weiss oscillations have been observed in the magnetoresis-
tivity parallel to the grating direction of the periodic potential 
and are negligible in the transverse direction. The effect has 
been quanti tatively accounted for in terms of the electronic 
velocity obtained from a quantum mechanical analysis of the 
changes in the band structure due to the periodically modu-
lated potential [23, 24] and the physical structure is referred to 
as a lateral superlattice. Notice that this is different from the 
superlattices considered in [21]: the modulation strengths in 
our case are of the order of 1–2 meV whereas in [21] are about 
100 times stronger.

The Weiss oscillations can also be understood using a clas-
sical approach that associates their periodicity with the com-
mensurability of the cyclotron orbit radius and the grating, 
which modifies the root-mean-square of the drift velocity 
of the guiding center [25]. This gives rise to oscillations of 
the magnetoresistivity with period 2Rc/a, where Rc  is the 
cyclotron radius at the Fermi energy and a is the period of 
the grating. This nice and intuitive picture is corroborated by 
the solution of the Boltzmann equation, assuming both iso-
tropic [25] and anisotropic [26] disorder scattering processes. 
Several theoretical works studied the Weiss oscillations in 
graphene systems. Using a quantum mechanical approach  
[23, 24], oscillations in the magnetoconductivity were studied 
for a magnetically modulated 2DEG [27] as well as for mono-
layer graphene modulated electrically [28] or magnetically 
[29]. The theory of Weiss oscillations was also extended to 
bilayer graphene [30] and more recently to silicene [31]. 
These studies put in evidence the similarities and differences 
between the Weiss oscillations in graphene and 2D electron 
systems. As a result, one expects the effect in graphene to be 
more robust against temperature due to graphene’s unique 
spectral properties. In fact, it has been observed exper-
imentally in graphene in the presence of an electrically modu-
lated potential [32]. Accordingly, it is important to study the 
same effect on phosphorene and its possible modifications due 
to phosphorene’s different band structure.

In this work we theoretically obtain phosphorene’s LL 
spectrum in the presence of a weak, perpendicular magnetic 
field B and of a weak, 1D periodic potential that introduces 
a new length scale, its period, into the problem. Then using 
general, Kubo-type formulas, expressed in terms of single-
particle eigenstates and eigenvalues, we evaluate the diffusive 
conductivity for electric or magnetic modulations. We find 
that the resulting Weiss oscillations in phosphorene appear at 
higher magnetic fields, compared to those in a conventional 

2DEG [23, 24] or graphene [28], and to shorter periods in 1/B. 
When the modulation is taken along the direction ( y ) of the 
larger effective mass, the oscillation period is close to that of a 
2DEG. Here we treat mainly the former case and briefly state 
some results for the latter.

The paper is organized as follows. In section 2 we derive 
all necessary expressions for the band structure and in sec-
tion 3 the results for an electrically or magnetically modulated 
phosphorene monolayer. In section 4 we present and compare 
numerical results for both modulations and in section 5 our 
summary.

2. Basic model formulation

The low-energy Hamiltonian of a perfect black phospho-
rous can be well described by a two-band effective k · p 
Hamiltonian written as [13, 18, 19]

H =

(
Ec + (αeΠ

2
x + βeΠ

2
y)/2

�γkx

�γkx

Ev − (λhΠ
2
x + ηhΠ

2
y)/2

)
.

 (1)
Here, Π = p + eA is the 2D canonical momentum, A 
the vector potential, and e(h) represents electrons (holes).  
Ec/v = ±E1

g ± ξc/vk2
z , E1

g = 2.0 eV, γ = 3.5 ∗ 105 m s−1 ,αe = 
1/mex = 1/0.151me, βe = 1/mey = 1/0.848me, λh = 1/mhx = 
1/0.122me, ηh = 1/mhy = 1/0.708me, and ξc/v = �2/2mc/v. 
We emphasize that interband coupling, expressed through γ, 
becomes important as the thickness of the phosphorous 
increases [19] while in monolayer phosphorene with large 
band gap (about 1.52 eV) it is weak; when treated as a per-
turbation it leads to a decoupled Hamiltonian that gives 
independent LLs in the conduction and valence bands [11]. 
Using the Landau gauge A = (0, Bx, 0) and diagonalizing the 
Hamiltonian (1), we obtain the eigenvalues of [19]

ET
n = E0

n + �2ω2
γ

[ n

E j
g + n�ω+ + 0.5�ω−

+
(n + 1)

E j
g + (n + 1)�ω+ − 0.5�ω−

]
,

 
(2)

where n = 0, 1, 2, ... is the Landau-level index. Further 
E j

g, ωγ, and ω± have the same meaning as in [19]. Here 

E0
n = Ec/v + (n + 1/2)�ω are the energy eigenvalues due to 

the unperturbed Hamiltonian H0, obtained by setting γ = 0 in 
equation (1), while the second and third terms on the right side 
of equation (2) are the perturbation corrections due to the term 
H′ in the full Hamiltonian H = H0 + H′ + H′′. As detailed in 
[19] the energy correction due to H′′ is very weak and negli-

gible. The cyclotron frequency is ω = eB/[m(e/h)xm(e/h)y]
1/2. 

It is interesting to note that unlike the anisotropic zero magn-
etic field dispersion, the LL spectrum is independent of in-
plane wavevectors.

We consider the band structure of H0 + H′, that leads to 
the eigenvalues (2), which we evaluate numerically to assess 
the importance of the perturbation correction terms. For very 
weak magnetic fields, pertinent to the Weiss oscillations, we 
find that the energy correction is very weak and negligible 
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and the Hamiltonian (1) can be simplified to that of a decou-
pled electron-hole system. This is quantified in figure  1, 
showing the eigenvalues (2) versus the field B, and is con-
sistent with [11] for weak interband coupling due to the huge 
band gap of phosphorene. Indeed, as inferred from figure 1, 
the corresponding perturbation correction of the eigenvalues 
is negligible. Accordingly, we consider only the decoupled 
Hamiltonian [11]

H0 =

(
Ee + (α′

eΠ
2
x + βeΠ

2
y)/2

0
0

Eh − (λ′
hΠ

2
x + ηhΠ

2
y)/2

)

 (3)
where Eg= Ee − Eh= 1.52 eV, Ee= 0.34 eV, Eh= −1.18 eV.  
If interband coupling is taken into account the effective mass 
near the Γ point, along the kx direction, becomes modified 
through α′

e = αe + γ2/Eg, λ′
h = λh + γ2/Eg but the one 

along the ky direction remains unchanged. The eigenvalues 
E0

e,n and eigenfunctions Ψn,ky(x, y) of H0 are

E0
e,n = E0

e + (n + 1/2)�ωe,Ψn,ky(x, y) =
eikyy
√

Ly

(φn(ue
x)

0

)
,

 (4)

where φn = (ξe,x/
√
π2nn!)1/2 exp[−(ue

x)
2/2]Hn (ue

x) is the  
simple harmonic oscillator function, ue

x = ξe,x(x − x0), x0 = 
l2ky, ξe,x = (m′

exωe/�)1/2, E0
e = Ee, ωe = eB/(m′

exmey)
1/2 = 

2.696ωc, ωc = eB/me the cyclotron frequency, and 
l = (�/eB)1/2.

We emphasize that equations (3) and (4) are valid only for 
weak interband coupling due to phosphorene’s huge gap. This 
would not be the case if the gap was small or in a multi-layer 
phosphorene. In such cases one would have to solve rather 
numerically equation  (1) to account for interband coupling 
without approximations [12].

3. Diffusive conductivity

To evaluate the electrical conductivity we use Kubo-type 
form ulas [24, 33] appropriate for weak external electric fields. 
When the field B is sufficiently strong that we have well-
defined cyclotron orbits, this formula can be simplified and 
related to the scattering-induced migration of the center of the 

cyclotron orbit. In addition to the field B we consider a weak, 
1D periodic potential as a small perturbation to the electron 
spectrum and calculate the conductivity correction caused by 
it. It was shown in [24] that the diffusive conductivity exhibits 
the largest in amplitude Weiss oscillations. Accordingly, we 
evaluate only this conductivity given by [33]

σµν =
βe2

LxLy

∑
ζ

f (Eζ)[1 − f (Eζ)]τ(Eζ)υ
ζ
µυ

ζ
ν . (5)

Here, Lx and Ly are the dimensions of the layer, 
µ, ν = x, y, β = 1/kBT  with kB the Boltzmann constant. 
Further, f (E) = [1 + eβ(E−EF)]−1 is the Fermi–Dirac distribu-
tion function and τ(E) the relaxation time. This expression is 
valid only for quasi-elastic scattering and we consider only 
that of electrons by impurities. From previous studies [24] we 
also know that the diffusive component σxx vanishes because 
so does the velocity matrix element υζ

x  and that the oscilla-
tions in σyy are one order of magnitude larger than those in 
the collisional conductivity σd

xx ≡ σcol
xx  and in the Hall conduc-

tivity σnd
yx . Accordingly we neglect these latter components.

3.1. Electric modulation

The perturbing Hamiltonian due to the 1D, periodic elec-
tric modulation is taken as He = V0 cos(Kx), where V0 is 
the strength of the modulation, about an order of magnitude 
smaller than Fermi energy (V0/EF � 1), K = 2π/a, and a 
the period of the modulation. Due to the smallness of V0, we 
employ first-order (in He) perturbation theory to evaluate the 
correction to the eigenvalues using the unperturbed eigen-
functions (4). This correction is given by

E′
n = Vn cos(Kx0), Vn = V0e−u/2Ln(u), (6)

where u = �K2/2m′
exωe and Ln(u) is a Laguerre polynomial. 

Then the total eigenvalue Ee,n = E0
e,n + E′

n is

Ee,n = E0
e + (n + 1/2)�ωe + Vn cos(Kx0). (7)

First we derive a relation for the bandwidth due to modulation 
potential using equation (6) as

∆E = 2 |Vn| = 2V0e−u/2|Ln(u)|. (8)

The qualitative differences in the energy spectrum with and 
without a modulation are also reflected in the density of states 
D(E),

D(E) =
1
πl2

∑
n,x0

δ(E − Ee,n(x0)), (9)

expressed per unit surface. All transport properties involve 
the Fermi energy EF determined by the electron concentra-
tion ne =

∫∞
0 D(E) f (E)dE . Using equation (9) we can write 

using the relation as

neπl2 =

∫ 2π

0

dt
2π

f (Ee,n(t)), (10)

where t = Kx0. Then EF is obtained by evalu-
ating the integral over t numerically. The summation  

Figure 1. Landau levels (LLs) in monolayer phosphorene, versus 
magnetic field, in the absence of a periodic modulation. The solid 
lines are the unperturbed LLs and the dashed ones those that 
include the correction ∝ �2ω2

γ in equation (2). Only the LLs with 
n = 0, 1, ..5, from bottom to top, are shown.
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in equation  (5) can be performed using the prescription 
∑

ζ → 2(Ly/2π)
∫ Lx/l2

0 dky
∑∞

n=0 → (2/2πl2)
∑∞

n=0. The matrix  

element υζ
y  in equation (5), obtained from equation (7), is

υζ
y = −(VnK/eB) sin(Kx0). (11)

Using equations (5), (7) and (11) we can express the diffusive 
contribution to the conductivity in the form

σyy = σ0
K2l2

2

∞∑
n=0

βf (Ee,n)[1 − f (Ee,n)] e−u [Ln(u)]2, (12)

where σ0 = 2(e2/h)(τV2
0/�). The factor 2 in σ0  is due to spin 

degeneracy. For later purposes we state an approximate form 
of equation (12) for very low temperatures: using the approx-
imation −βf (Ee,n)[1 − f (Ee,n)] ≈ δ(EF − Ee,n), it takes the 
form

σyy = σ0
K2l2

2

∞∑
n=0

δ(EF − Ee,n) e−u [Ln(u)]2. (13)

3.2. Magnetic modulation

The one-electron Hamiltonian given in equation  (3) in the 
presence of a perpendicular magnetic field B and a 1D peri-
odic magnetic modulation is written [27] as

H = Ee +
(
α′

eΠ
2
x + βe[ py + eBx + (eBm/K) sinKx]2

)/
2

= H0 + Hm.
 (14)
Here, we employed the Landau gauge and wrote the vector 
potential as A = (0, Bx + (Bm/K) sinKx, 0), with K = 2π/a 
and a the period of the modulation. Bm is the magnetic modu-
lation strength such that Bm � B . The eigenvalues and eigen-
functions of the unperturbed Hamiltonian H0 are the same as 
those in equation (4). To first-order in B the correction Hm to 
the Hamiltonian is

Hm = (U0/�K)( py + eBx) sin(Kx), (15)

where U0 is the amplitude of the modulation that is 
about an order of magnitude smaller than Fermi energy 
(U0/EF � 1). U0 = βe�eBm with βe = 1/mey = 1/0.848me. 
Due to the smallness of U0, we employ first-order perturba-
tion theory to evaluate the correction to the eigenvalues using 
the unperturbed wave functions (4). The correction obtained is

U′
n = Un cos(Kx0), Un = U0e−u/2{Ln(u)/2 + L1

n−1(u)
}

.
 (16)

Therefore, the total (E1
e,n = E0

e,n + U′
n) energy eigenvalue for a 

magnetically modulated system is written as

E1
e,n = E0

e + (n + 1/2)�ωe + Un cos(Kx0). (17)

The bandwidth corresponding to equation (15) is

∆M = 2 |Un| = 2U0e−u/2
∣∣Ln(u)/2 + L1

n−1(u)
∣∣. (18)

Following the procedure of section 3.1, we obtain the diffu-
sion conductivity due to magnetic modulation

σ1
yy = σ1

0(K
2l2/2)

∞∑
n=0

βf (E1
e,n)[1 − f (E1

e,n)]

×
{

e−u/2[Ln(u)/2 + L1
n−1(u)]

}2
,

 

(19)

where σ1
0 = 2(e2/h)(τU2

0/�).

4. Results and discussion

The numerical results for massive electrons in mono-
layer phosphorene are presented below as func-
tions of the magnetic field B or its inverse 
1/B. The parameters we employed are [11, 19]: ne = 1 × 1016  
m−2, band gap in the conduction band Ee = 0.34 eV,  
α′

e = 1/m′
ex = 1/0.167me, βe = 1/mey = 1/0.848me, λ′

h = 
1/m′

hx = 1/0.184me , ηh = 1/mhy = 1/1.142me, and τ = 100  
fs [34]. For comparisons with the 2DEG we use 
mx = my = me, the same τ for simplicity, and a typical den-
sity ne = 3 × 1015 m−2.

In general, the SdH oscillations result from the emptying 
out of electrons from successive LLs when the Fermi level 
passes through them as the magnetic field B is increased. 
Their amplitude is a monotonic function of the field B. In 
periodically modulated phosphorene though the LLs become 
bands whose width oscillates with the band index n and field 
B. This affects the transport properties of electrons and results 
in another type of oscillations, known as commensurability 
or Weiss oscillations, in the diffusion conductivity due to a 
commensurability between the period of the potential and the 
radius of the cyclotron orbit at the Fermi energy. They have 
the following characteristics: (1) they are periodic in 1/B like 
the SdH oscillations; (2) their period varies with the electron 
density ne as 

√
ne, whereas that of the SdH ones varies as 

ne; (3) their amplitude depends on the temperature much less 
than that of the SdH oscillations; (4) they are visible at weak 
magnetic fields, typically B < 0.6 T, and at higher fields are 
modulated by the SdH ones.

4.1. Electric modulation

We show the numerically evaluated bandwidth, at the Fermi 
level, in figure 2(a) (solid curve) as a function of the magn-
etic field B. For comparison we also show it for a 2DEG 
by the dashed curve. The nth LL width is given by equa-
tion (9) for n = nF  where nF = (EF − Eg)/�ωc − 1/2, is the 
LL index at the Fermi energy EF. Because nF is taken as an 
integer, the bandwidth exhibits a step each time EF moves 
through a new LL. For the system under consideration the 
magnetic field is weak and the position of the minima and 
maxima of the bandwidth are well resolved as in a conven-
tional 2DEG[22–25]. The oscillations of the bandwidth 
result from those of the factor e−u/2Ln(u), which in the large 
n limit, i.e. for weak magnetic fields, behaves approximately 

as (π2nu)1/4 cos
(
2(nu)1/2 − π/4

)
+ 0(1/n3/4). Moreover, 

the Weiss oscillations in phosphorene appear below B = 1 
T whereas in the 2DEG they appear below B = 0.3 T. 

J. Phys.: Condens. Matter 29 (2017) 425302
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Similarly, the SdH oscillations appear above B = 0.3 T 
in the 2DEG whereas in phosphorene they appear beyond 
B = 1 T.

This major difference results from the asymmetry of the 
effective masses in phosphorene, which is absent in a 2DEG, 
that in turn affects the factor u. The latter is 2.22 times larger 
in phosphorene than in a 2DEG system for the parameters 
given at the start of section 4. This will become clearer below. 
The situation changes for modulations taken along the larger 
effective mass my, see the last paragraph of this section.

To further contrast the two bandwidths, we plot them in 
figure 2(b) versus inverse field 1/B. The plot makes it clear 
that the two bandwidths have different periods, that of phos-
phorene being approximately three times shorter than that of 
the 2DEG. The reason for this difference is the larger effec-
tive mass of electrons in phosphorene than in a 2DEG which 
affects the cyclotron frequency ωe = 2.696ωc, given below 
equation (4), and the argument of the Laguerre polynomials 
in equation (6).

In figure 3(a) we show EF as a function of the magnetic 
field B at two different temperatures. The solid curve is for 
T = 2 K and the dotted one for T = 5 K. We have solved 
equation (11) numerically in order to obtain the magnetic-field 
dependence of EF. In figure  3(b) we plot EF versus inverse 
field 1/B. From figure 3 we see that (1) the 1D modulation 
induces weak oscillations in the Fermi energy for B < 1 T, 

whose amplitude depends weakly on the temperature, and (2) 
for B > 1 T the T = 2 K result shows SdH oscillations which 
are washed out for T = 5 K. One period in bandwidth oscilla-
tions corresponds to one period in EF oscillations.

In figure 4 we show the diffusive conductivity, for phos-
phorene and a 2DEG, as a function of the magnetic field at 
temperature T = 2 K. In line with the bandwidth and the 
Fermi energy shown in figures 2 and 3, in phosphorene we 
observe the Weiss oscillations below B = 1 T. For a 2DEG 
they occur below B = 0.7 T and the last one is modulated 
by the small-amplitude SdH oscillations. Notice also that the 
different periods shown in figure 2 also occur in the diffusive 
conductivity shown in figure 4(a), versus B, and in figure 4(b) 
versus 1/B.

To assess the influence of temperature in figure 5 we plot 
the diffusive conductivity in electrically modulated phos-
phorene versus B in (a) and versus 1/B in (b). As seen in (a), 
the short-period SdH oscillations are washed out when the 
temperatures is raised from 2 K to 5 K. We also observe that 
they appear at temperature T = 2 K above B = 1 T whereas 
below B = 1 T we have only the Weiss oscillations. This is 
in good agreement with the bandwidth and the Fermi energy 
discussed in figure 2 and 3, respectively. We also see that the 
amplitude of the Weiss oscillations is weakly affected by the 
temperature whereas that of the SdH ones is very sensitive 
to it, as shown in (a) for B � 1 T, and vanishes for B > 1 T.  

Figure 2. Bandwidths of electrically modulated phosphorene (solid curve) and of a 2DEG (dashed curve) versus (a) magnetic field and (b) 
inverse magnetic field. The period of the modulation is 300 nm and its amplitude V0 = 1 meV. The step-like structure in the dashed curve, 
extracted from [24], is due to the Shubnikov–de Haas oscillations.

Figure 3. Fermi energy in electrically modulated phosphorene versus (a) magnetic field and (b) inverse magnetic field for T = 2 K  
(solid curves) and T = 5 K (dashed curves). The modulation strength is V0 = 1 meV and its period 300 nm.
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In panel (b) one can see the SdH oscillations only in the range 
1 > 1/B � 0.5 upon slightly blowing up the figure.

At this point some comments are in order about the period 
of the SdH oscillations in phosphorene compared to those in a 
2DEG. Looking closely at the dashed, red curve in figure 4(b), 
for 2.8 � 1/B � 1, and the solid curve in figure  5(b), for 
0.5 � 1/B � 1 one sees that the SdH period in a 2DEG is about 
3 times longer than that in phosphorene. We show that more 
clearly in figure 6. Since the SdH 1/B period is proportional to 

the density, this is not always the case. It occurs here because 
the two densities differ approximately by a factor of 3. If we 
artificially increase the 2DEG density to a rather exceedingly 
high one, ne = 1016 m−2, both SdH periods are nearly the 
same and the same holds for the Weiss oscillations.

So far the modulation was taken along the direction 
(x) of the smaller effective mass. Given the anisotropy of 
phosphorene’s spectrum, one may wonder how the results 
change for a modulation taken along the direction ( y ) of the 

Figure 4. Diffusive conductivity of electrically modulated phosphorene versus (a) magnetic field and (b) inverse magnetic field for T = 2 
K. The solid curve is for phosphorene and the dashed one for a 2DEG. The amplitude of the periodic potential is V0 = 1 meV and its period 
is 300 nm. The results for a conventional 2DEG are extracted from [24].

Figure 5. Diffusive conductivity of electrically modulated phosphorene (a) versus magnetic field and (b) versus inverse magnetic  
field for T = 2 K (solid curve) and T = 5 K (dashed curve). The amplitude of the periodic potential is V0 = 1 meV and its period is 300 nm.

Figure 6. (a) Comparison of the SdH oscillations between phosphorene and a 2DEG for the densities shown. The data are taken from 
figure 4(b) (dashed curve) and 5(b) (solid curve). (b) Diffusive conductivity σxx versus 1/B for a modulation taken along the direction ( y ) 
of the larger effective mass, mey = 0.848me. The temperature is 2 K, the amplitude of the periodic potential is V0 = 1 meV and its period is 
300 nm.
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larger effective mass, mey = 0.848me. In this case we use 
the gauge A = (−By, 0, 0), obtain the bandwidth (8) with 
u = �K2/2meyωe, and evaluate σxx. Given how close mey  is to 
me, the oscillations of the bandwidth and of the conductivities 
have nearly the same period as those in a 2DEG. Figure 6(b) 
shows the diffusive conductivity σxx versus 1/B for T = 2 K. 
Notice that σxx is significantly higher than σyy. This can be 
understood by the fact that the factor u = �K2/2meyωe makes 
e−u quite larger in vζ

x  which enters the expression for σxx, see 
equations (8), (11), and (12) as readily modified for the pre-
sent case.

4.2. Magnetic modulation

We show the bandwidth in figure 7, as a function of B field 
(black, solid curve) in (a) and of 1/B in (b), and contrast it 
with that for electric modulation (red, dashed curve). The 
modulation strengths are V0 = U0 = 0.01 meV and the 
periods 300 nm.

As shown, (i) the corresponding oscillations are out of 
phase and (ii) the bandwidths differ by nearly one order of 
magnitude since the one for electric modulation is scaled up 
by a factor of 9 to approximately match the height of that for 
magnetic modulation. Such a contrast has also been reported 
for a 2DEG [27].

Further, we show the diffusive conductivity in figure  8, 
as a function of the magnetic field, by the black, solid curve, 
and contrast it with that for an electric modulation by the 
red, dashed curve. The parameters are the same as those in 
figure 7. As expected from figure 7, the two sets of oscillations 
are phase shifted and their amplitudes differ by a factor of 50. 
The Weiss oscillations are well resolved below B = 1 T and 
the SdH ones above it.

We continue by showing the magnetically modulated dif-
fusion conductivity in figure 9, as a function of the electron 
density, by the black, solid curve, and contrast it with that for 
an electric modulation by the thin, red curve. Both curves are 
for temperature T = 1 K and magnetic field B = 2 T. The 
long-period, modulation-induced or Weiss oscillations are 
clearly seen as the envelope of the short-period SdH ones. For 
an electric modulation this behaviour can be understood from 
equation (13) valid for very low temperatures.

With EF ∝ ne, the SdH oscillations result from the delta 
function factor though the nth level bandwidth (� EF) oscil-
lates quite more slowly with nF = (EF − Eg)/�ωc − 1/2. As 
for the Weiss oscillations, they result mainly from the factor 
e−u[Ln(u)]2, outside the delta function, which is the square 
of the bandwidth (6), though this bandwidth (� EF) also 
appears in the argument of the delta function. Notice again the 
differences between magnetic and electric modulations: the 

Figure 7. Bandwidths of magnetically (solid curve) and electrically (dashed curve) modulated phosphorene versus (a) magnetic field and 
(b) inverse magnetic field. The period of both modulations is 300 nm and the amplitudes V0 = U0 = 0.01 meV. The electric bandwidth is 
scaled up by a factor of 9.

Figure 8. Diffusive conductivity, at temperature T = 1 K, for (a) magnetically (solid curve) and electrically (dashed curve) modulated 
phosphorene versus (a) magnetic field and (b) inverse magnetic field. The amplitudes of the periodic potentials are V0 = U0 = 0.01 meV 
and their period 300 nm. The dashed curves are scaled up by a factor of 50.

J. Phys.: Condens. Matter 29 (2017) 425302



M Tahir and P Vasilopoulos 

8

oscillation amplitude for the latter is scaled up by a factor of 
200 to become visible. A similar argument holds for a magn-
etic modulation using equation  (19) and the approximation 
−βf (E1

e,n)[1 − f (E1
e,n)] ≈ δ(EF − Ee,n).

5. Summary

We studied the effects of a weak, 1D periodic electric or magn-
etic modulation of monolayer phosphorene on its band struc-
ture, Fermi energy, and the diffusive conductivity as functions 
of a weak, perpendicular magnetic field B. We showed periodic 
Weiss oscillations in the correspponding LL bandwidths, Fermi 
energy, and diffusive conductivity, which can be controlled by 
the strength of the modulation. The oscillation amplitude is 
much larger in magnetically modulated phosphorene than in an 
electrically modulated one and a π shift exists between the corre-
sponding oscillations. Relative to a 2DEG, the Weiss oscillations 
have a period approximately three times shorter and the SdH 
ones occur at about three times higher B fields. The situation 
changes when the modulation is taken along the direction ( y ) of 
the larger effective mass: as explained at the end of section 4.1, 
the period of the Weiss and SdH oscillations is approximately 
equal to that in a 2DEG. These findings contribute to the funda-
mental investigations of 2D phosphorene’s electronic properties 
and may be relevant to the design of modulated devices.
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