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The Aharonov-Bohm (AB) effect in square phosphorene quantum rings, with armchair and zigzag edges, is
investigated using the tight-binding method. The energy spectra and wave functions of such rings, obtained as a
function of the magnetic flux � threading the ring, are strongly influenced by the ring width W , an in-plane electric
field Ep , and a side-gating potential Vg . Compared to a square dot, the ring shows an enhanced confinement due
to its inner edges and an interedge coupling along the zigzag direction, both of which strongly affect the energy
spectrum and the wave functions. The energy spectrum that is gapped consists of a regular part, of conduction
(valence) band states, that shows the usual AB oscillations in the higher- (lower-) energy region, and of edge
states, in the gap, that exhibit no AB oscillations. As the width W decreases, the AB oscillations become more
distinct and regular and their period is close to �0/2, where the flux quantum �0 = h/e is the period of an ideal
circular ring (W → 0). Both the electric field Ep and the side-gating potential Vg reduce the amplitude of the
AB oscillations. The amplitude can be effectively tuned by Ep or Vg and exhibits an anisotropic behavior for
different field directions or side-gating configurations.
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I. INTRODUCTION

Quantum confinement effects occur in low-dimensional
systems and lead to strong modifications of the electronic,
optical, and transport properties when compared with bulk
systems. In this context, semiconductor nanostructures, such
as quantum wells, wires, and dots, have been the subject of
intense research interest [1]. Another important class of such
low-dimensional systems are quantum rings [2], in which
the phase coherence of the carrier wave function allows
the observation of quantum interference effects such as the
Aharonov-Bohm (AB) effect [3]. A remarkable property of
quantum rings is that an equilibrium current, the so-called
persistent current, can be driven by an external magnetic field
without any external sources [4]. This is a direct consequence
of the AB effect, which manifests itself in the energy spectrum
of the ring as a periodic function of the magnetic flux
threading the ring. The AB effect and persistent currents
have been extensively studied in semiconductor quantum rings
both experimentally [5–8] and theoretically [9–11], and are
expected to have potential applications in quantum electronics
and quantum information.

Nanoscale quantum rings have been fabricated from two-
dimensional (2D) materials, in which the phase coherence
length is larger than or comparable to their circumferences
at low temperatures. This implies that the AB effect is
observable in such rings. Actually, many experimental [12–15]
and theoretical [16–22] studies of the AB effect in graphene
quantum rings have been made but, to our knowledge, little on
phosphorene quantum rings (PQRs).

Phosphorene, a relatively new 2D material, has recently
been exfoliated [23,24]. Owing to its unique properties, it
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has attracted a lot of attention from the research community.
Compared to other known 2D materials, such as graphene
(having zero band gap) [25] and single-layer MoS2 (having
low carrier mobility) [26], phosphorene has the combined
properties of a finite (direct) band gap [27] and a relatively high
carrier mobility [23], which is crucial for practical applications
such as field-effect transistors. Another striking property of
phosphorene is its anisotropic optical response to linearly
polarized light [28–30]. This property is not present in most
other 2D materials, such as graphene and single-layer MoS2,
and makes phosphorene a natural candidate for optical devices
that manipulate the light polarization.

Most recently, nanometer-sized phosphorene quantum dots
(PQDs) have been fabricated and characterized [31,32]. This
motivated theoretical studies of the electronic and optical
properties of PQDs [33–35]. Some interesting results were ob-
tained, such as unconventional edge states in PQDs [33,35] and
anomalous size-dependent optical properties of PQDs [34].
Since a PQR can be viewed as a PQD containing an antidot,
which introduces inner edges to the system, one can expect
that the geometry of the ring and, depending on its width, the
interedge coupling will lead to new physical properties which
are not present in a PQD.

Previously, we investigated the electric and magnetic field
dependence of the electronic and optical properties of PQDs by
means of the tight-binding (TB) approach [35]. In the present
paper, we will extend this approach to PQRs and study how the
ring width, an in-plane electric field, and a side-gating potential
influence the energy spectrum and the wave functions of a
PQR. Compared to frequently employed continuum models, a
major advantage of the TB model is that it takes into account
the atomic structure of the ring that is particularly important
for very narrow rings exhibiting edge states.

The main results obtained in this work are as follows:
(i) The AB oscillation, observed in the energy spectrum of a
PQR, depends strongly on the ring width, the in-plane electric
field, and the side-gating potential, and (ii) the spectrum
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contains edge states that are almost insensitive to the magnetic
flux through the ring, which makes PQRs different from
traditional quantum rings made of metals or semiconductors.
We analyze and discuss these results using the wave-function
properties of PQRs. There are mainly the following two
reasons for studying phosphorene rings and not semiconductor
or graphene rings in the present work: (i) Phosphorene rings
support inner and outer edge states which are distinctly
different than those in traditional semiconductor rings; and (ii)
phosphorene rings exhibit highly anisotropic AB oscillations
in their energy spectra, which are not present in graphene rings.

The paper is organized as follows. In Sec. II we present the
TB model for a PQR subjected to a perpendicular magnetic
field and to an in-plane electric field or a side-gating potential.
In Sec. III we calculate the energy levels and the corresponding
wave functions as a function of the magnetic flux threading
the ring, and investigate the influences of the ring width, the
electric field, and the side-gating potential. Finally, we make a
summary and give concluding remarks in Sec. IV.

II. TIGHT-BINDING MODEL

We start with a square PQD (SPQD) of side length L [see
Fig. 1(a)], a finite phosphorene lattice, using the TB model
developed in Ref. [36]. The TB Hamiltonian is given by

H =
∑

i

εic
†
i ci +

∑
i,j

tij c
†
i cj . (1)
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FIG. 1. Schematic view of (a) a SPQD and (b) a SPQR, with
armchair edges along the x direction and zigzag edges along the
y direction, in the presence of an external perpendicular magnetic
field B. L is the side length of the SPQD, and Lin (Lout) is the
length of the inner (outer) side of the SPQR, so the ring width is
given by W = (Lout − Lin)/2. The entire SPQR may be subject to
an in-plane electric field, Fx or Fy , or have different side-gating
potentials ±Vg/2 applied to its arms (indicated by the yellow regions).
(c) Schematic lattice structure of phosphorene (top view). The unit
cell (rectangle) consists of four inequivalent phosphorus atoms with
two of them labeled by dark-gray solid circles and the other two
labeled by light-gray solid circles. The symbols t1–t5 denote five
hopping links between different phosphorus atoms.

The summation runs over all lattice sites of the system, εi is the
on-site energy at site i, tij is the hopping energy between sites
i and j , and c

†
i (cj ) is the creation (annihilation) operator of an

electron at site i (j ). It has been shown [36] that it is sufficient
to take five hopping energies to describe the band structure
of phosphorene, namely, t1 = −1.220 eV, t2 = 3.665 eV, t3 =
−0.205 eV, t4 = −0.105 eV, and t5 = −0.055 eV. In addition,
the on-site energies are taken as ε = 0 for all lattice sites in
the absence of external fields and potentials.

We identify the hopping matrix elements t1–t5 between
different phosphorus atoms in Fig. 1(c). The above on-site
energy and hopping energies are chosen such that the resulting
TB model gives a good description of the phosphorene band
structure, in the low-energy region near the band gap, as
compared to density functional theory (DFT) calculations in
the GW approximation (see Ref. [36]). This is done by using
a truncation of the hopping energies and a reoptimization
of the remaining parameters. Notice that there is only one
orbital per atom in the TB model, because, according to DFT
calculations [36], the pz orbital has the largest contribution
in both the conduction and valence bands in the low-energy
region near the band gap. In the high-energy region, well
above the band gap, the TB model needs to be modified by
including more atomic orbitals such as the s, px , and py ones
due to their large mixture with the pz orbital (see Ref. [36]
and also Ref. [37]). Inside a phosphorene layer, each atom is
covalently bonded with three adjacent phosphorus atoms to
form a puckered lattice structure due to the sp3 hybridization.
This structure can be viewed as consisting of two sublayers
in which the bonding energy is dominated by the in-plane
(intrasublayer) ppπ bonds and the out-of-plane (intersublayer)
ppσ bonds, with the latter much stronger than the former.
The result is that t2 has the largest magnitude, because it is
derived from the strong out-of-plane σ -σ bonding between
the pz orbitals in the different sublayers, while t1 and t3
are derived from the relatively weak in-plane π -π bonding
between the pz orbitals in the same sublayer. Although t4
and t5 have the same derivation as t2, their bonding distances
are much larger and, as a result, their magnitudes are much
smaller.

The TB model based on Eq. (1) has been applied previously
to phosphorene nanoribbons [38] and PQDs [33,35]. Here,
we extend it to PQRs in the presence of external fields and
potentials. To create the ring geometry, a central region, empty
of any atoms (antidot), is introduced in the original dot by
setting the hopping parameters equal to zero for all absent
atoms. We also remove all dangling bonds that are possibly
present at the inner and outer edges.

In the present work we consider a square PQR (SPQR) with
inner and outer side lengths Lin and Lout placed in the (x,y)
plane, as shown in Fig. 1(b). Due to the same shape for the
dot and antidot, the SPQR has armchair edges along the x

direction and zigzag edges along the y direction at both the
outer and inner boundaries. When an in-plane electric field F is
applied to the SPQR along the armchair (zigzag) direction, the
on-site energies in the TB Hamiltonian (1) should be modified
by adding an electric potential term −eFxx (−eFyy), with
e being the electron charge. However, when a perpendicular
magnetic field B is applied to the SPQR, the hopping energies
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tij in Eq. (1) should be replaced by

tij → tij exp

(
i
2πe

h

∫ rj

ri

A · dl
)

, (2)

where h is Planck’s constant and A the vector potential induced
by the field B. We use the Landau gauge, and we have A =
(0,Bx,0). The magnetic flux threading the ring is defined as
� = BS in units of the flux quantum �0 = h/e, where S is
taken as the average area, S = (Sin + Sout)/2, with Sin and Sout

being the areas enclosed by the inner and outer edges of the
ring, respectively.

We also take into account different side-gate potentials
Vg applied to the upper and lower arms of the SPQR [see
Fig. 1(b)] or to its left and right arms. Such potentials create an
asymmetry between the two arms. In the present work we
consider an asymmetric side-gating potential, which can be
modeled as Vy(x)(x,y) = Vg/2 with y > Lin/2 (x < −Lin/2)
for the upper (left) arm and Vy(x)(x,y) = −Vg/2 with y <

−Lin/2 (x > −Lin/2) for the lower (right) arm, and this
potential is added to the on-site energies in the TB Hamiltonian
(1). Experimentally, the side-gating influence on the AB effect
was previously studied in a circular graphene ring [13] with
different finite voltages applied to its arms.

The energy levels and wave functions of the PQR are
obtained by diagonalizing the TB Hamiltonian matrix numer-
ically. All TB calculations are performed using the recently
developed PYBINDING package [39].

III. RESULTS AND DISCUSSION

Below, we first present the energy spectrum of a square
PQD (SPQD) as a function of the magnetic flux, that we use
as a starting point, together with that for a ring of fixed width
made out of this SPQD. Then we investigate the influence of
varying the width on the spectrum of the ring, and finally that
of an in-plane electric field and of a side-gating potential.

A. Quantum dot versus quantum ring

A SPQD with armchair and zigzag edges is schematically
shown in Fig. 1(a). For the numerical calculation the dot side
is taken L = 8 nm long. The energy spectrum as a function of
the magnetic flux is plotted in Figs. 2(a)–2(d). To accentuate
the magnetic field dependence, the energy-spectrum regions
denoted by the three red rectangles shown in Fig. 2(a) are
enlarged in Figs. 2(b)–2(d). As can be seen, the energy levels
in the valence (conduction) band shown in Fig. 2(b) [Fig. 2(d)]
correspond to the so-called bulk states, which are mainly
distributed in the central region of the SPQD. These bulk levels
approach the Landau levels (LLs) at high magnetic fields. The
nearly flat energy levels in the band gap, shown in Fig. 2(c),
correspond to the edge states, which are strongly localized
at the zigzag boundaries of the SPQD. These edge states are
almost unaffected by the magnetic field due to their strong
localized nature. Here, we distinguish bulk and edge states
according to their wave-function properties.

(a) (b) (c) (d)

(b)

(c)

(d)

(e) (f) (g) (h)

(f)

(g)

(h)

FIG. 2. (a)–(d) Energy spectrum of a SPQD, with side length L = 8 nm, as a function of the magnetic flux at zero electric field and
side-gating potential. (e)–(h) As in (a)–(d) for a SPQR, with an outer (inner) side length Lout = 8 nm (Lin = 4 nm). Both the dot and the ring
have armchair edges along the x direction and zigzag edges along the y direction. The red rectangles shown in (a) and (e) are enlarged next to
them, as indicated, and that in (g) is enlarged in the inset.

205426-3



LI, MOLDOVAN, VASILOPOULOS, AND PEETERS PHYSICAL REVIEW B 95, 205426 (2017)

We now contrast the energy spectrum of this SPQD with
that of a SPQR that can be created by piercing a square hole
(or square antidot) in the middle of the SPQD, as shown
schematically in Fig. 1(b). This hole introduces inner edges
to the original dot that are also armchair or zigzag type. In the
numerical calculation the outer and inner side lengths are taken
as Lout = 8 nm and Lin = 4 nm, respectively, so the ring width
is W = (Lout − Lin)/2 = 2 nm. Comparing Figs. 2(e)–2(h)
with Figs. 2(a)–2(d), we observe the following differences:
(1) The bulk levels have larger energy separations because
of the enhanced confinement in the ring; (2) this enhanced
confinement also renders the lowest (highest) bulk levels in the
conduction (valence) band almost independent of the magnetic
flux �; (3) the bulk levels in the higher- (lower-) energy range
in the conduction (valence) band oscillate with �, that is, they
exhibit the AB effect; (4) the number of edge states increases,
compared to that for the dot, in a given energy range, as shown
in Figs. 2(c) and 2(g); this is due to the increased number
of zigzag edges in the ring since the edge states occur only
at the zigzag edges; and (5) some edge-state levels shown in
Fig. 2(g), e.g., those with energy between E = −0.21 and
−0.17 eV, are not perfectly flat but vary slightly with �, as
shown in its inset; this is due to a partial delocalization of
those edge states induced by the interedge coupling in the
ring.

To understand the origins of bulk and edge states, the
enhanced confinement, and the interedge coupling mentioned
above, we plot in Fig. 3 the probability densities of the
lowest-energy states shown in Figs. 2(d) and 2(h) and of
those shown in Figs. 2(c) and 2(g) all for zero magnetic flux
(� = 0) (they are indicated by the solid black dots in these
figures). Here, (α) and (β) correspond to Figs. 2(d) and 2(h),
respectively, showing the results for the SPQD, while (γ ) and
(δ) correspond to Figs. 2(c) and 2(g), respectively, showing
those for the SPQR. These probability densities are normalized

(α) (β)

(γ) (δ)

FIG. 3. Probability densities, at zero magnetic flux (� = 0), of
the lowest-energy states marked by the black dots in Fig. 2: (α) and
(β) correspond to Figs. 2(c) and 2(d), respectively, (γ ) and (δ) to
Figs. 2(g) and 2(h), respectively.

with respect to their maximum values. As can be seen, in both
the SPQD and SPQR the bulk states are mainly distributed
in the bulk parts (i.e., away from the boundaries) while the
edge states are strongly localized at the zigzag boundaries.
However, comparing Figs. 3(α) and 3(γ ) as well as Figs. 3(β)
and 3(δ), we see the enhanced confinement and the interedge
coupling in the SPQR.

As already shown in Fig. 2(h) [Fig. 2(f)], the bulk levels
of the SPQR in the higher- (lower-) energy range in the
conduction (valence) band display AB oscillations while those
in the lower- (higher-) energy region in the same band show
almost no oscillations, i.e., they are almost unaffected by the
magnetic field. To better understand this behavior, we look at
the probability densities of the corresponding energy states.
Since there are many bulk energy levels involved in Fig. 2(h),
we only show some of them in order to illustrate the point.
Figure 4 shows the probability densities of the bulk states with
given energy E and flux �. As can be seen in the first row,
for � = 0 the wave function of the state with E = 0.474 eV
is mainly localized at the central region of the top and bottom
arms of the ring. However, with increasing energy E, while
keeping � = 0, e.g., for E = 1.417 eV, the corresponding
wave function is extended almost to the whole region of
the ring. From the physics viewpoint, when the magnetic
length lB = (h̄/eB)1/2 is comparable to, or shorter than, the
localization length of the wave function, the corresponding
energy state will be affected by the magnetic field B. To further
substantiate this viewpoint, we show in the second row of Fig. 3
how increasing the field B affects the probability densities of
the energy states at � = 0 (B = 0) shown in the first row. As
can be seen, for lower- (higher-) energy E, the corresponding
wave function is more localized (extended) and it is obviously
less (more) affected by the field B. This is the main reason for
our observation in Fig. 2(h) [Fig. 2(f)] that the bulk states in
the higher- (lower-) energy region in the conduction (valence)
band exhibit AB oscillations while those in the lower- (higher-)
energy region in the same band show almost no oscillations
with the field B (or the flux �).

B. Influence of the ring width

We now consider the influence of the ring width W on the
energy spectrum of the SPQR. To this effect, in one ring we
take the outer and inner sides as Lout = 8 nm and Lin = 6 nm
long, in the other Lout = 8 nm and Lin = 4 nm long; this
gives a width W = 2 nm (W = 1 nm) for the wider (narrower)
ring. The corresponding energy spectra, as a function of the
magnetic flux �, are shown in Figs. 5(a)–5(d), for W = 2 nm,
and in Figs. 5(e)–5(h) for W = 1 nm. As can be seen, with
decreasing W the bulk energy levels exhibit more regular
AB oscillations. This can be understood by invoking an ideal
circular ring (W → 0) whose energy spectrum is given by

E(l,�) = h̄2

2m∗R2
(l − �/�0)2. (3)

Here, l is the angular quantum number which takes integer
values, m∗ is the electron effective mass, and R the radius
of the ring. Equation (3) shows that the energy spectrum of
the ideal ring exhibits perfect periodic AB oscillations as a
function of the magnetic flux � with period �0. In contrast,
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FIG. 4. Probability densities of the energy states shown in Fig. 2(h) with energy E and magnetic flux �, as indicated.

for the finite-width rings considered here, the period of the AB
oscillations is not �0 but close to 0.5�0. Our numerical results
indicate that upon further decreasing W the period becomes
much closer to 0.5�0. Note that the angular quantum number

l is well defined in an ideal ring (i.e., its energy levels with
different l’s are crossing each other), but is not a good quantum
number in a square ring due to the lack of perfect circular
symmetry (which is broken by the square ring boundaries). In

(a) (b) (c) (d)

(e) (f ) (g) (h)

(f)

(g)

(h)

(b)

(c)

(d)

FIG. 5. Energy spectrum of a SPQR, with armchair and zigzag edges, as a function of the magnetic flux. The ring width is W = 2 nm in
the upper panels and W = 1 nm in the lower ones. The outer sides are Lout = 8 nm long for both rings. The marking of the panels is the same
as in Fig. 2.
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the SPQR, this symmetry breaking leads to the interaction of
oscillating energy levels and thus anticrossings between these
levels. Such anticrossings account for halving the period of the
AB oscillations in a SPQR (close to 0.5�0).

Another interesting observation is that there also exist some
nonoscillating energy levels embedded in those oscillating
ones. These two distinctive sets of energy levels are induced
by different confinement effects along the x (armchair) and
y (zigzag) directions. Fundamentally, this is because the
band anisotropy of bulk phosphorene gives rise to different
electron/hole effective masses along the armchair and zigzag
directions [28]. We also observe that the edge-state levels
in the narrower ring are almost unaffected by the magnetic
field B. This is counterintuitive because, according to what is
mentioned above, the edge states in a narrow ring should be
more delocalized due to the interedge coupling and therefore
should be more affected by the field B. However, the fact that
in narrow rings the geometric confinement is stronger than
the magnetic one leads to the counterintuitive observation. In
addition, due to this strong geometric confinement, the bulk
energy levels are grouped into many subbands separated by
energy gaps.

C. Influence of electrostatic potentials

To study the effect of electrostatic potentials on the energy
spectrum of a SPQR, we consider two configurations: One

is to apply a uniform in-plane electric field to the SPQR
and the other to apply an asymmetric side gating to it. The
influence of an in-plane field on the AB effect was earlier
studied experimentally in a normal metal ring (Sb loop) [40]
by placing it between two capacitor probes. It was shown that
such a field can be used to tune the AB oscillations in the
magnetoresistance of the loop. More recently, the influence of
an asymmetric side gating on the AB effect was experimentally
studied in a graphene circular ring [13] with two different side
voltages applied to its arms (sides). It was found that a π phase
change can be induced in the AB oscillations.

As mentioned previously, in a SPQR only bulk states in
the conduction and valence bands exhibit the AB oscillations
while edge states in the bulk band gap show no such
oscillations. In Fig. 6 we show the effects of an in-plane electric
field Fx and of a side-gating potential Vy on the oscillating
energy levels in the conduction band of a SPQR with outer and
inner side lengths Lout = 8 nm and Lin = 4 nm. The field Fx is
applied along the armchair direction of the SPQR and the po-
tential Vy is applied asymmetrically to its upper and lower arms
[see Fig. 1(b)]. These configurations are similar to those used
in Refs. [13,40]. As can be seen by comparing Figs. 6(a), 6(b),
and 6(c), the AB oscillations of the energy levels become
weaker and some of them even disappear in the presence of
the field Fx or the potential Vy . To understand the weakened
oscillations in these energy levels, we may again look at the
probability densities of the corresponding energy states, as

(α) (β)

(γ)

(a) (b) (c)

(α) (β) (γ)

FIG. 6. Energy spectrum [(a)–(c)] and wave functions [(α)–(γ )] of a SPQR, with outer (inner) side length Lout = 8 nm (Lin = 6 nm) and
with armchair and zigzag edges, as a function of the magnetic flux, in the absence and presence of an in-plane electric field Fx or an asymmetric
side-gating potential Vy . (a) and (α) are for Fx = 0 and Vy = 0, (b) and (β) for Fx = 0.05 V/nm and Vy = 0, and (c) and (γ ) for Fx = 0 and
Vy = 0.25 V. The energy levels indicated by the green curves have the same state index of 506 in the whole energy spectrum, as indicated in
(a)–(c).
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C1

C2

V = +Vg / 2

Fx

V = −Vg / 2

FIG. 7. Schematic plot of a model square ring in the presence
of an electric field Fx or side-gating potentials ±Vg/2. Here, C1,C2

denote two particle’s traveling paths that are separated by two black
dots, as indicated.

those shown in Fig. 4. The probability densities corresponding
to the points indicated by arrows in Figs. 6(a), 6(b), and 6(c)
are shown in Figs. 6(α), 6(β), and 6(γ ), respectively. As can
be seen, the field Fx or potential Vy tends to further localize
the bulk states, thereby making them difficult to be affected
by the magnetic field, and thus leads to weaker oscillations in
the energy levels. Another interesting result is that there is no
phase shift in the AB oscillations of the energy levels when
the field or potential is present. To show this result clearly, we
choose typical energy levels indicated by the green curves in
Figs. 6(a)–6(c). These energy levels have the same state index
of 506 in the whole energy spectrum. It is clear that there is
no phase shift between them, i.e., their local energy maximum
and minimum positions are not changed in the presence of

the electric field or gate potential. Below, we give a physical
explanation of this zero phase shift.

The AB effect is the modulation of the phase of the particle
wave function by electromagnetic potentials. The extra phase
acquired by the particle wave function due to an electric
potential V is given by [3] ϕ = (q/h̄)

∫
(V/v)dl, where q is

the charge of the particle and v its velocity. We consider a
model square ring in the presence of an electric field Fx or
side-gating potentials ±Vg/2, as shown in Fig. 7. Note the
model ring is in a closed type, i.e., it has no leads, which is as
that considered in the present work. The relative phase change
of the particle’s traveling paths C1 and C2 can be written
as �ϕ = ϕ1 + ϕ2 = (q/h̄)

∫
C

(V/v)dl, with C = C1 + C2 and
the subscripts 1 and 2 denoting the two traveling paths. Since
the velocity is independent of the particle’s traveling path,
we obtain �ϕ = 0 after performing an integral over the closed
loop C formed by the traveling paths C1 and C2. This accounts
for why there is no phase shift in the AB oscillations in a closed
ring (without leads).

Our numerical results also indicate that for the field Fy

(applied along the zigzag direction) or the potential Vx (applied
asymmetrically to the left and right arms), a similar effect, i.e.,
reduced amplitude and no phase shift of the AB oscillations,
can also be observed in a SPQR. Moreover, the amplitude
of the AB oscillations in a SPQR can be effectively tuned
by varying the field Fx or Fy , as shown in Fig. 8. Since the
potential Vx (Vy) has a similar effect on the AB oscillations
as the field Fx (Fy), we only show the results for the field
case in this figure, where the left (right) panels of Fig. 8 are
for the field Fx (Fy) along the armchair (zigzag) direction.
In the numerical calculation, the outer and inner side lengths
are taken as Lout = 8 nm and Lin = 6 nm, and the amplitude
is defined as �E = max(En) − min(En) with En being the
energy level of the nth eigenstate. As the top parts in both
panels show, the energy levels in the SPQR depend sensitively
on Fx (Fy), and these levels are coupled together, leading
to anticrossings in the energy spectrum. In particular, more
anticrossings are observed for Fy than for Fx . This is mainly

FIG. 8. Energy spectrum (E) and AB-oscillation amplitude (�E) of a SPQR, with outer (inner) side length Lout = 8 nm (Lin = 6 nm)
and with armchair and zigzag edges, as a function of the field Fx along the armchair direction (left panels) or of the field Fy along the zigzag
direction (right panels). Only results for two energy levels are shown for the amplitude and their state indices are indicated in the bottom panels.
The vertical thin black dashed lines indicate the positions of the amplitude peaks.

205426-7



LI, MOLDOVAN, VASILOPOULOS, AND PEETERS PHYSICAL REVIEW B 95, 205426 (2017)

(a)

(b)

E 
[e

V
]

E 
[e

V
]

(c) (d)

(e) (f)

FIG. 9. (a) and (b) Energy of a few lowest edge states, vs state index, in a SPQR of inner (outer) side length Lin = 4 nm (Lout = 8 nm),
with armchair and zigzag edges, at � = 0, for (a) Fx = 0 and (b) Fx = 0.05 V/nm. (c) and (d) show the probability densities of the two lowest
edge states in (a) while (e) and (f) show those of the two lowest states in (b).

due to the anisotropic energy spectrum of phosphorene, i.e.,
different energy dispersions exist along the armchair and
zigzag directions. To clearly show how Fx or Fy affects the
amplitude of the AB oscillations in the SPQR, we choose
only two energy levels that exhibit AB oscillations. Their
state indices are 507 and 508 in the whole energy spectrum,
as indicated in the lower panels. Notice that in both cases
the amplitude (�E) oscillates as a function of the field,
Fx or Fy , with an overall decreasing trend interrupted by
some oscillatory behavior. This behavior of the amplitude
is induced by the anticrossings of these energy levels. For
instance, the energy levels indicated by the green and blue
curves have anticrossings not only with each other but also
with neighboring levels, and the positions of amplitude peaks
correspond to the field values at the anticrossing points.
Consequently, the number of the amplitude peaks is larger
for Fy than for Fx . The overall decreasing trend of the
amplitude is due to the field- or potential-enhanced localization
of electronic states.

Furthermore, we find that the edge-state levels are twofold
degenerate in the absence of the electric field or side-gating
potential. The degeneracy is lifted for nonzero field or potential
because the spatial symmetry is broken by either of them.
In Fig. 9(a) we show the degeneracy of the edge levels at
zero field Fx = 0 and in Fig. 9(b) their lifting at nonzero
field Fx = 0.05 V/nm. Similar results are obtained for the
field Fy . To understand the lifting of this degeneracy, we
contrast the probability densities of edge states for Fx = 0
and Fx = 0.05 V/nm. In Figs. 9(c)–9(f), we show the effect
of Fx on the probability densities of the two lowest edge states
in Fig. 9(a): Figs. 9(c) and 9(d) are for Fx = 0, and Figs. 9(e)
and 9(f) for Fx = 0.05 V/nm. As can be seen, the two lowest
edge states have the same probability densities for Fx = 0
and both of them are symmetrically localized at the inner and
outer zigzag boundaries of the ring [see Figs. 9(c) and 9(d)],
which implies that they are degenerate for Fx = 0. However,
this degeneracy is broken for Fx = 0.05 V/nm and the two
states localize only on the left or right zigzag arms of the ring
[see Figs. 9(e) and 9(f)]. The side-gating potential Vx or Vy

has a similar effect on these edge states and their probability
densities.

D. Influence of geometry, contrast with graphene,
and conventional 2DEG

So far we presented results only for square phosphorene
rings. One may wonder (i) what changes occur in the period,
if any, when other ring shapes are considered, and (ii) how the
results for SPQRs compare with square rings made of graphene
or conventional two-dimensional electron gas (2DEG).

Regarding (i), we also studied circular, nanometer-sized
phosphorene rings. Though we do not show the results, we
can affirm that the period of the AB oscillations in circular
phosphorene quantum rings is the same as in SPQRs, i.e., it is
close to 0.5�0, and when the rings are placed in a field (Fx ,
Fy) or side gated by a potential (Vx , Vy), the amplitude of the
AB oscillations is reduced. As for (ii), the period for square
graphene quantum rings, with armchair and zigzag edges,
is again close to 0.5�0. The same holds for quantum rings
made of conventional 2DEG (see Ref. [9]), where a period
0.5�0 was found. This is not surprising as the mechanism
for reducing the period from �0 to 0.5�0 is in all cases the
interaction (i.e., coupling) between different energy levels (or
modes) that lead to anticrossings in the energy spectrum as
most clearly shown in the enlarged red-framed windows of
Figs. 5(d) and 5(h). The intermode coupling is mainly caused
by the symmetry breaking induced by the ring boundaries, i.e.,
anisotropic (zigzag and armchair) boundaries. Before closing
we point out that the AB oscillations predicted here might be
experimentally observed by optical means, e.g., through mea-
suring magnetic-field-dependent absorption/emission spectra.
Such optical means have indeed been used to detect the AB
effect in semiconductor rings [7] and carbon nanotubes [41].

IV. CONCLUDING REMARKS

Using the TB method we have investigated the AB effect
in nanometer-sized SPQRs with armchair and zigzag edges.
The energy spectra and wave functions of such SPQRs were
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obtained as a function of the magnetic flux threading the rings.
We found that, compared to SPQDs, SPQRs show enhanced
confinement and interedge coupling which have a large impact
on the energy spectra and wave functions. From the probability
densities of the electronic states, we can clearly distinguish
between bulk and edge states that depend differently on the
magnetic flux �: The bulk energy levels change periodically
with � while the edge energy levels are almost unaffected by
it. As a result, AB oscillations are observed in the bulk energy
spectra of SPQRs in the conduction (valance) bulk states in
the higher- (lower-) energy region but not in the edge energy
spectra of SPQRs.

We further examined the effects of the ring width, of an in-
plane electric field, and of an asymmetric side-gating potential
on the energy spectra and the wave functions of SPQRs. We
found that (1) as the ring width decreases, the AB oscillations
become more regular but their period is not the magnetic flux

quantum �0 of the ideal ring but close to �0/2 due to the
interaction between different energy levels or modes that lead
to anticrossings; (2) in the presence of an electric field or
a side-gating potential, the amplitude of the AB oscillations
is reduced, compared to that in their absence; and (3) the
amplitude can be effectively tuned by the field or potential and
exhibits an anisotropic behavior for different field directions
or side-gating configurations. We analyzed and discussed the
results using the wave functions of bulk and edge states in
SPQRs.
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