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Spin- and valley-dependent miniband structure and transport in silicene superlattices
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We investigate silicene superlattices in the presence of a tunable barrier potential U , an exchange field M , and
a perpendicular electric field Ez. The resulting miniband structure depends on the spin and valley indices and on
the fields M and Ez. These fields determine the minigaps and also affect the additional Dirac points brought about
by the periodic potential U . In addition, we consider diffusive transport and assess its dependence on the spin
and valley indices as well as on temperature. The corresponding spin and valley polarizations strongly depend on
the potential U and can be made almost 100% at very low temperatures at particular values of the Fermi energy.
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I. INTRODUCTION

Silicene is a two-dimensional (2D) hexagonal lattice of
silicon atoms, similar in structure to graphene, except for
the fact that its two sublattices have a height difference of
2� with the buckling height � ≈ 0.23 Å. This material has
attracted considerable attention in recent years [1]. It has
been predicted to be stable [2] and there have been several
attempts to synthesize it [3–6]. The energy spectrum of silicene
has a small gap due to its strong spin-orbit interaction [7],
determined by the coupling strength λso. Due to the buckled
structure of silicene, this gap can be tuned by applying a
perpendicular electric field [8,9], leading to a gap of size
2(szηEz� ± λso), where sz = ±1 and η = ±1 are the spin
and valley indices, respectively. This tuning of the gap, a
property which is absent in graphene, and its compatibility
with silicon-based technology, makes silicene an excellent
candidate for applications in nanoelectronics. Very recently,
a silicene based field-effect transistor was reported [10].

One can also induce an exchange field M in silicene by
putting a ferromagnet near its surface and further influence its
spin properties. Combined with the spin and valley dependence
of the gap and the fact that silicon has a longer spin-
diffusion time [11,12] and spin-coherence length [13] than
graphene [14], this makes silicene an excellent candidate for
applications in spintronics and valleytronics. Such considera-
tions led to many studies of important effects such as the spin-
and valley-Hall effects [15–18], the quantum anomalous Hall
effect [9,19], the spin-valley coupling [20], etc., see Ref. [21]
for a review.

Recent studies on the influence of electric and exchange
fields on ballistic transport through potential barriers led
to the prediction of near-perfect spin ps and valley pv

polarizations [22–24] for energies near the barrier height U .
Also, ps and pv increase with the number of barriers [24].
Such findings strongly motivate studying silicene superlattices
(SSLs) and the influence of scattering on the corresponding,
nonballistic transport. It is also of interest to investigate how
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the additional Dirac points, caused by the SL potential as
shown for graphene [25,26] with Ez = M = 0, are affected
by finite Ez and M . The condition for these extra Dirac points
is sin(qxb) = 0, where qx is the x component (we take x

perpendicular to the barriers as depicted in Fig. 1) of the wave
vector inside the barriers of width b; it means that half of the
particle’s wavelength fits an integer number of times inside the
barrier.

The aim of the present research is to build on recent
studies [23,24] and study SSLs. In particular, the aim is
to assess the dependence of the miniband structure on the
spin and valley degrees of freedom and on the fields M and
Ez. A second aim is to go beyond the ballistic transport
of Refs. [23,24] and investigate the more realistic diffusive
transport, its dependence on these factors, and evaluate ps

and pv at finite temperature. The main findings of this work
are as follows: (i) the positions of the additional Dirac points
found near the K (K ′) valley in the energy spectrum depend
on the fields Ez ad M since so does the x component of
the wave vector in the barriers and wells; (ii) the minigaps
initially increase with Ez and M but with further increase they
close. This behavior of the energy spectrum is reflected in
the density of states and the conductivity, which are spin and
valley dependent, and the spin ps and valley pv polarizations.
(iii) At very low temperatures ps and pv are nearly perfect,
within a realistic range of the fields Ez and M , but decrease
as the temperature is raised. iv) Contrary to results for a
finite number of barriers [22–24], in the ballistic regime these
polarizations are no longer restricted to energies near the top
of the barriers but do depend on U .

The paper is organized as follows. In Sec. II we present the
basics of the formalism and obtain the SL dispersion relation.
In Sec. III we present results for the miniband structure, the
density of states, and the diffusive conductivity. In addition,
we evaluate ps and pv and assess their dependence on the
fields M and Ez and the temperature. We summarize our main
results in Sec. IV.

II. DISPERSION RELATION

We consider silicene in the presence of a SL potential U ,
an exchange field M , and a perpendicular electric field Ez.
The field M can be induced by placing a ferromagnetic layer
near the surface of silicene. We assume that the different spin
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FIG. 1. Sketch of the superlattice potential.

states are completely decoupled, which means we neglect
very small intrinsic and extrinsic Rashba effects referred to
as λR1 and λR2 in Refs. [9,27]. Then for low energies the
one-electron Hamiltonian is given by

Hη,sz
=

(
�z + U (x) �vF (kx + iηky)

�vF (kx − iηky) −�z + U (x)

)
. (1)

Here vF is the Fermi velocity, U (x) = U0(x) + szM is
the potential energy function, which includes the periodic
superlattice potential U0(x) and the exchange field M , and
�z = szηeEzl + λso contains the electric field strength Ez, the
buckling height l, and the spin-orbit interaction (SOI) strength
λso. The indices η and sz distinguish, respectively, between the
K and K ′ valleys and the spin-up (↑) and spin-down states (↓).

For U (x) = 0 the energy spectrum is given by

Esz,η = ±([
�2

z + �
2v2

F k2
]1/2 + szM

)
, (2)

which has a spin and valley dependent energy gap of size
2(�z + szM) and the spectrum is linear for larger k. With
translational invariance in the y direction the eigenstates
outside the barriers are �(x,y) = ψ(x)eikyy where

ψ(x) = A

(
1

rk−

)
eikxx + B

(
1

−rk+

)
e−ikxx, (3)

with r = �vF /(E − szM + �z), k± = kx ± iηky , and

kx = [
((E − szM)/�vF )2 − (�z/�vF )2 − k2

y

]1/2
(4)

the x component of the wave vector outside the barriers. Inside
the barriers the wave functions are found by changing E to
E − U0; for instance, the x component of the wave vector is

qx = [
((E − U0 − szM)/�vF )2 − (�z/�vF )2 − k2

y

]1/2
. (5)

The SL structure has a unit cell of width L which contains a
barrier of width b, and a quantum well of width w = L − b, as
depicted in Fig. 1. The wave functions obey Bloch’s theorem
and are continuous at the potential steps. This leads to

ψ(0−) = ψ(0+)

ψ(b) = ψ(−w)eiκxL. (6)

After matching the wave functions and applying the conditions
(6) we obtain the SL dispersion relation

cos(κxL) = cos(wkx) cos(bqx) − F sin(wkx) sin(bqx) (7)

with

F = k2
xε

2
b + q2

x ε
2
w + k2

y(εb − εw)2

2kxqxεwεb

(8)

εw = E + �z, εb = E + �z − U0 − szM. (9)

Apart from the explicit dependence on the spin and valley
indices as well as the fields M and Ez, Eq. (7) is of the standard
form and has to be solved numerically.

III. RESULTS AND DISCUSSION

A. Spectrum, density of states, and conductivity

It is convenient to introduce new units which results in
the following dimensionless quantities: E → ε = (E/�vF )L,

U → u = (U/�vF )L, �z → (�z/�vF )L, κx → κxL, ky →
kyL, w → w/L, b → b/L. Additionally, we will substitute
the energy between the barriers by ε → ε + bu and within
the barriers by ε − u → ε − wu, in order to avoid shifting
the Fermi energy by u/2 as a result of adding the superlattice
potential to the system. By solving Eq. (7) numerically we find
the energy spectrum shown in Figs. 2 and 3. It is periodic in
κx and exhibits a miniband structure. For low values of u, it
is mostly hyperbolic as a function of ky . However, as we see
in Fig. 3, the structure changes significantly for higher values
of u. For u > 4π , there are two extra Dirac points for κx = 0,
and even more for higher values of u. The condition for them
is easily found by solving Eq. (7) for ε = 0, w = b = 0.5, and
κx = 0. For w �= b these extra Dirac points do not occur at

FIG. 2. Upper panel: Superlattice miniband structure with �z =
2λso. Lower panels: Miniband structure for spin-down electrons (left)
and for spin-up electrons (right) near the K valley. Near the K′ valley
the results for spins down and spins up are reversed. The parameters
used are u = 2π , b = w = 0.5, eEz� = λso and M = 0.
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FIG. 3. Miniband structure for b = w = 0.5 and �z = 2λso. The
top left (right) panel is for κx = 0 (κx = π ), and the bottom left (right)
one for ky = 0 (ky = π ).

ε = 0 but at ε �= 0, see Ref. [26] for more details. For ε = 0
we find

0 =
(

u2 + 4
(
�2

z + k2
y

)
u2 − 4

(
�2

z + k2
y

) − 1

)
sin2(kx/2). (10)

For ky �= 0 or �z �= 0, Eq. (10) leads to sin(kx/2) = 0. Its
solution corresponds to the original Dirac point when a critical
field value Ec = ±λso/e� closes the gap. In turn sin(kx/2) = 0
leads to

ky = [
(u/2)2 − (2jπ )2 − �2

z

]1/2
(11)

where j is an integer larger than 0. For �z = 0 Eq. (11) reduces
to the result for graphene [26]. The condition sin(kx/2) = 0
expresses the fact that half the wavelength λ = 2π/kx(2π/qx)
fits an integer number of times inside the barriers (wells). Note
however that this is not the case for the Bloch wave vector
κx . The behavior of the energy spectrum at κx = ky = 0 as a
function of kx is shown in Fig. 4. The upper panels are for
different Ez with M fixed and the lower ones for different M

with Ez fixed. The exchange field M simply raises (lowers) the
energy of spin-down (spin-up) electrons. As seen the minigaps
increase with Ez. After reaching a maximum size though, they
do decrease as shown for the first two of them in Fig. 5. The
decrease occurs when two of the extra Dirac points are shifted
to the K valley. The minigaps behave in a similar way when
the exchange field M is varied.

Using the SL miniband structure, we can find the density
of states (DOS) given by

D(ε) =
∑
n,�k

δ(ε − εn(�k)) (12)

where the integer n labels the minibands and �k = κx �ex + ky �ey .
The results are shown in Fig. 6 for several values of u. Similar
to the case of graphene [26], the DOS peaks at the edges of
the Brillouin zones. These values correspond to local minima,
maxima, or saddle points in the energy spectrum, which have
different positions in the k plane for different values of u.

FIG. 4. Miniband structure for spin-up (left) and spin-down
(right) electrons near the K valley at ky = 0 for three values of the
field Ez (top row) and of the field M (bottom row).

Near these points the energy states accumulate. It is also clear
that for higher potential barriers the peaks get larger as this
corresponds to more pronounced minima of the energy as a
function of ky as seen in Fig. 3.

The energy spectrum also allows us to calculate the
diffusive conductivity σμν , with μ = x,y and ν = x,y, which
measures the system’s capacity to carry a current in the μ

direction in response to an electric field in the ν direction. If
we assume a nearly constant relaxation time τ (EF ) ≈ τF the
expression for σμν is [28]

σμν(εF ) = βσ0

∑
n,k

vnμvnνfnk(1 − fnk) (13)

with

vnμ(k) = vF [∂εn(k)/∂kμ] (14)

the group velocity in the μ direction, σ0 = τF e2/A, A is the
area of the system, β = 1/kBT , fn(k) = 1/(eβ(EF −Enk) + 1)
the Fermi-Dirac distribution, and τ a relaxation time for elastic

FIG. 5. Behaviour of the first (left) and second (right) gaps at the
K point as a function of �z.
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FIG. 6. Density of states for w = b = 0.5 and �z = 2λso. The δ

function was approximated by a Gaussian with variance σ 2 = 0.01.

scattering. In the absence of a magnetic field we only consider
μ = ν. However, there is a spin- and a valley-Hall effect, as
discussed in Ref. [29]. The analytical expression for the group
velocity in the x direction is

vx

vF

=
[

sin(kxw) cos(qxb)

(
ε + ub

kx

w + F
ε − uw

qx

b

)

+ cos(kxw) sin(qxb)

(
ε − uw

qx

b + F
ε + ub

kx

w

)

+F ′ sin(kxw) sin(qxb)

]−1

sin(κxw) , (15)

where

F ′ = (ε + ub)ε2
b + (ε − uw)ε2

w + k2
xεb + q2

x εw

kxqxεwεb

+ F

2

(
ε + ub

k2
x

+ ε − uw

q2
x

+ 1

εw

+ 1

εb

)
. (16)

The expression for vy is found in the same straightforward
manner as Eq. (15) but the result is quite large and therefore
will be omitted. The peaks in the conductivity σxx (see Fig. 7)
correspond to the peaks of the DOS at the Fermi energy and
broaden as the temperature increases. For T → 0 we can
replace βfnk(1 − fnk) by δ(εF − εnk) and obtain

σμμ(εF ) = σ0vF

∑
n,i

v2
μ(ki)[

v2
x(ki) + v2

y(ki)
]1/2 (17)

FIG. 7. Diffusive conductivity, in units of σ0, along the x (left) and
y (right) directions for w = b = 0.5, T = 10 K, and Ez = 2λso/e�.

FIG. 8. Energy spectra for electrons with different valley degrees
of freedom, with M = 1 and Ez = λso/e�.

where i labels the solutions of εn(ki) = εF . The conductivities
σxx and σyy are shown in Fig. 7 for several values of u. As seen,
for low energies σxx is larger than without the SL potential
(u = 0), while for higher energies the opposite is true. As for
σyy , it is mostly linear except for large u, similar to the case for
free silicene (u = 0), because of the translational invariance in
the y direction.

B. Spin and valley polarizations

Electrons with different spin and valley indices have a
different energy gap for the same electric field Ez and when the
system is magnetized, the different spin states differ in energy,
as shown in Fig. 8. It is clear that these differences are also
present in the corresponding conductivities. Due to the lifted
spin and valley degeneracies, we can define a spin polarization
p

μ
s by

pμ
s = σK↑

μμ + σK ′↑
μμ − σK↓

μμ − σK ′↓
μμ

σ
K↑
μμ + σ

K ′↑
μμ + σ

K↓
μμ + σ

K ′↓
μμ

(18)

and a valley polarization pμ
v by

pμ
v = σK↑

μμ = σK ′↑
μμ + σK↓

μμ − σK ′↓
μμ

σ
K↑
μμ + σ

K ′↑
μμ + σ

K↓
μμ + σ

K ′↓
μμ

. (19)

The results for p
μ
s and pμ

v are shown in Fig. 9. One sees that
they are optimal near εF = nπ with n an integer, i.e., at the
location of the energy gaps. Since above and below the gaps
they are opposite to each other, this allows for their quick
switching by varying the electron energy. Near which gaps
the polarizations are optimal depends on the potential strength
u. As u increases, the polarizations increase near the gaps

FIG. 9. Spin and valley polarization based on the conductivity in
the x direction for w = b = 0.5, eEzl = 5λso, and M = 2 meV for
varying u.
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at higher energies, while near the primary gap they decrease.
This corresponds to the increased conductivity visible in Fig. 7,
which is due to the extra Dirac points and the smaller energy
gaps at high values of u. As the conductivity remains high
for all electrons, the polarization is less drastic, which is why
they are only optimal near the gaps in the first place. In the y

direction we only find a polarization near the zero-energy gap
cases. Since this is not different from the results for silicene
without the SL, we omit further details.

In Fig. 10 we show how the conductivity and the polar-
izations behave as a function of the fields Ez and M . The
conductivity increases as a function of M , since the electron
energy moves away from the gap, and decreases as a function
of Ez, because the field Ez increases the gap to the point that
the electron energy lies in the gap. The spin polarization is
obviously an odd function of the magnetization but disappears
for higher values of M , because the overall higher conductivity
lowers the relative difference between the conductivity for
different spins. A high valley polarization is only possible for
a sufficiently strong electric field Ez. We also see that near the
second energy gap the polarizations disappear for too strong
fields Ez. This can be explained by the fact that the miniband
gaps do not keep increasing for stronger fields, due to the
further opening of the first gap, which squeezes the minibands
closer together, see Fig. 5.

FIG. 10. (M,Ez) contour plots of the conductivity in units of 4σ0

(top), of the spin polarization (middle), and of the valley polarization
(bottom) at T = 10 K. The left panels are for εF = 0.3 and u = 2π

and the right ones for εF = π + 0.3 and u = 4π .

FIG. 11. Spin (left) and valley (right) polarization for u = 2π ,
w = b = 0.5, eEzl = 5λso and M = 2 meV as a function of temper-
ature and Fermi energy.

C. Temperature dependence

Near perfect spin and valley polarizations have already been
found in ballistic transport through potential barriers, and the
results correspond well to what we found, with the exception
of polarizations in the higher conductivity range that we did
not find. These were the result of transmission resonances,
obtained by the transfer matrix method, but seem suppressed
in the SL case. Here we consider diffusive transport, which
is more realistic for SLs, and include temperature in our
conductivity calculation. We limit ourselves to a constant
relaxation time τF as due to only impurity scattering, which
holds for low temperatures. For high temperatures, not
considered here, phonon scattering comes into play and will
change the temperature dependence. As seen in Figs. 11
and 12, the polarizations remain relatively strong at very low

FIG. 12. Conductivity σxx , spin (ps) and valley (pv) polarizations
versus temperature for u = 2π , w = b = 0.5. The left panels are for
M = 2 and the right ones for eEzl = 3λso.
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temperatures. Their decrease with temperature can be offset
by using stronger fields. If the fields are too high, however, the
total electron energy, in which the polarizations are optimal,
will lie outside the narrow energy region, see Fig. 10. The
conductivity increases with temperature because the smearing
of the energy bands allows more energy states to contribute to
the conduction.

IV. SUMMARY AND CONCLUSIONS

We investigated the behavior of the energy gaps in silicene
SLs as a function of the applied electric Ez and exchange M

fields. Initially, the field Ez creates energy band gaps, but due
to the presence of extra Dirac points on both sides of the K and
K ′ valleys, the gaps close again when the Dirac points move
towards the origin of the K (K ′) valleys. Before all extra Dirac
points annihilate in this way, there are zero-energy modes and
the system remains metallic, contrary to the case of silicene
without a SL. The gaps between the minibands behave in a
similar fashion, although for large Ez, these gaps diminish in
size. This is a consequence of the widening of the first band
gap, which pushes the minibands closer together.

From the energy spectrum we obtained the DOS and the
longitudinal conductivity in the x and y directions. Since both
depend on the spin and valley degrees of freedom when the
fields Ez and M are present, the different conductivities can

be used to calculate the spin and valley polarizations. At very
low temperatures we find nearly perfect polarizations close to
the different gaps in the miniband structure. The polarizations
above and below the gaps are opposite to each other. Near
which gaps they are optimal depends on the potential strength
u. For higher u the polarizations near the gaps at higher
energies are improved, while at lower energies the extra
Dirac points keep the conductivity high for all electrons, thus
decreasing the polarization.

The polarizations decrease with increasing temperature but
this decrease can be partially offset by increasing the strength
of the fields Ez and M . Compared to the results of the transfer-
matrix method for a finite number of barriers, the general
behavior of the polarizations versus the applied fields is similar,
with the exception of polarizations in the higher conductivity
range [24] which resulted from resonances in the transmission
probability but which are suppressed in the SL case. However,
due to the SL miniband structure highly efficient polarizations
are found for a wider range of electron energies.
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075131 (2007); S. Lebègue and O. Eriksson, ibid. 79, 115409
(2009).

[3] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis,
M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Phys. Rev.
Lett. 108, 155501 (2012); A. Fleurence, R. Friedlein, T. Ozaki,
H. Kawai, Y. Wang, and Y. Yamada-Takamura, ibid. 108, 245501
(2012).

[4] D. Chiappe, E. Scalise, E. Cinquanta, C. Grazianetti, B. v. Broek,
M. Fanciulli, M. Houssa, and A. Molle, Adv. Mater. 26, 2096
(2014).

[5] L. Chen, C.-C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng,
Y. Yao, and K. Wu, Phys. Rev. Lett. 109, 056804 (2012).

[6] L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang,
G. Li, H. Zhou, W. A. Hofer, and H. J. Gao, Nano. Lett. 13, 685
(2013).

[7] C.-C. Liu, H. Jiang, and Y. Yao, Phys. Rev. B 84, 195430 (2011).
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Appl. Phys. Lett. 102, 162412 (2013).
[18] C. J. Tabert and E. J. Nicol, Phys. Rev. B 87, 235426

(2013).
[19] M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012).
[20] L. Stille, C. J. Tabert, and E. J. Nicol, Phys. Rev. B 86, 195405

(2012).
[21] A. Kara, H. Enriquez, A. P. Seitsonen, L. C. Lew Yan Voon,

S. Vizzini, B. Aufray, and H. Oughaddoub, Surf. Sci. 67, 1
(2012).

[22] T. Yokoyama, Phys. Rev. B 87, 241409(R) (2013).
[23] V. Vargiamidis and P. Vasilopoulos, Appl. Phys. Lett. 105,

223105 (2014); J. Appl. Phys. 117, 094305 (2015).
[24] N. Missault, P. Vasilopoulos, V. Vargiamidis, F. M. Peeters, and

B. Van Duppen, Phys. Rev. B 92, 195423 (2015).
[25] C.-H. Park, Y.-W. Son, L. Yang, M. L. Cohen, and S. G. Louie,

Phys. Rev. Lett. 103, 046808 (2009); L. Brey and H. A. Fertig,
ibid. 103, 046809 (2009).

[26] M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 81,
075438 (2010); Phil. Trans. R. Soc. A 368, 5499 (2010).

[27] B. Van Duppen, P. Vasilopoulos, and F. M. Peeters, Phys. Rev.
B 90, 035142 (2014).

[28] M. Charbonneau, K. M. van Vliet, and P. Vasilopoulos, J. Math.
Phys. 23, 318 (1982).

[29] V. Vargiamidis, P. Vasilopoulos, and G. Q. Hai, J. Phys. Condens.
Matter 26, 345303 (2014).

125425-6

http://dx.doi.org/10.1021/nl203065e
http://dx.doi.org/10.1021/nl203065e
http://dx.doi.org/10.1021/nl203065e
http://dx.doi.org/10.1021/nl203065e
http://dx.doi.org/10.1103/PhysRevB.88.245408
http://dx.doi.org/10.1103/PhysRevB.88.245408
http://dx.doi.org/10.1103/PhysRevB.88.245408
http://dx.doi.org/10.1103/PhysRevB.88.245408
http://dx.doi.org/10.1063/1.4852636
http://dx.doi.org/10.1063/1.4852636
http://dx.doi.org/10.1063/1.4852636
http://dx.doi.org/10.1063/1.4852636
http://dx.doi.org/10.1103/PhysRevB.76.075131
http://dx.doi.org/10.1103/PhysRevB.76.075131
http://dx.doi.org/10.1103/PhysRevB.76.075131
http://dx.doi.org/10.1103/PhysRevB.76.075131
http://dx.doi.org/10.1103/PhysRevB.79.115409
http://dx.doi.org/10.1103/PhysRevB.79.115409
http://dx.doi.org/10.1103/PhysRevB.79.115409
http://dx.doi.org/10.1103/PhysRevB.79.115409
http://dx.doi.org/10.1103/PhysRevLett.108.155501
http://dx.doi.org/10.1103/PhysRevLett.108.155501
http://dx.doi.org/10.1103/PhysRevLett.108.155501
http://dx.doi.org/10.1103/PhysRevLett.108.155501
http://dx.doi.org/10.1103/PhysRevLett.108.245501
http://dx.doi.org/10.1103/PhysRevLett.108.245501
http://dx.doi.org/10.1103/PhysRevLett.108.245501
http://dx.doi.org/10.1103/PhysRevLett.108.245501
http://dx.doi.org/10.1002/adma.201304783
http://dx.doi.org/10.1002/adma.201304783
http://dx.doi.org/10.1002/adma.201304783
http://dx.doi.org/10.1002/adma.201304783
http://dx.doi.org/10.1103/PhysRevLett.109.056804
http://dx.doi.org/10.1103/PhysRevLett.109.056804
http://dx.doi.org/10.1103/PhysRevLett.109.056804
http://dx.doi.org/10.1103/PhysRevLett.109.056804
http://dx.doi.org/10.1021/nl304347w
http://dx.doi.org/10.1021/nl304347w
http://dx.doi.org/10.1021/nl304347w
http://dx.doi.org/10.1021/nl304347w
http://dx.doi.org/10.1103/PhysRevB.84.195430
http://dx.doi.org/10.1103/PhysRevB.84.195430
http://dx.doi.org/10.1103/PhysRevB.84.195430
http://dx.doi.org/10.1103/PhysRevB.84.195430
http://dx.doi.org/10.1103/PhysRevB.85.075423
http://dx.doi.org/10.1103/PhysRevB.85.075423
http://dx.doi.org/10.1103/PhysRevB.85.075423
http://dx.doi.org/10.1103/PhysRevB.85.075423
http://dx.doi.org/10.1088/1367-2630/14/3/033003
http://dx.doi.org/10.1088/1367-2630/14/3/033003
http://dx.doi.org/10.1088/1367-2630/14/3/033003
http://dx.doi.org/10.1088/1367-2630/14/3/033003
http://dx.doi.org/10.1038/nnano.2014.325
http://dx.doi.org/10.1038/nnano.2014.325
http://dx.doi.org/10.1038/nnano.2014.325
http://dx.doi.org/10.1038/nnano.2014.325
http://dx.doi.org/10.1103/PhysRevLett.99.177209
http://dx.doi.org/10.1103/PhysRevLett.99.177209
http://dx.doi.org/10.1103/PhysRevLett.99.177209
http://dx.doi.org/10.1103/PhysRevLett.99.177209
http://dx.doi.org/10.1142/S1793292012500373
http://dx.doi.org/10.1142/S1793292012500373
http://dx.doi.org/10.1142/S1793292012500373
http://dx.doi.org/10.1142/S1793292012500373
http://dx.doi.org/10.1039/c1cs15047b
http://dx.doi.org/10.1039/c1cs15047b
http://dx.doi.org/10.1039/c1cs15047b
http://dx.doi.org/10.1039/c1cs15047b
http://dx.doi.org/10.1038/nature06037
http://dx.doi.org/10.1038/nature06037
http://dx.doi.org/10.1038/nature06037
http://dx.doi.org/10.1038/nature06037
http://dx.doi.org/10.1103/PhysRevLett.107.076802
http://dx.doi.org/10.1103/PhysRevLett.107.076802
http://dx.doi.org/10.1103/PhysRevLett.107.076802
http://dx.doi.org/10.1103/PhysRevLett.107.076802
http://dx.doi.org/10.1002/pssr.201206202
http://dx.doi.org/10.1002/pssr.201206202
http://dx.doi.org/10.1002/pssr.201206202
http://dx.doi.org/10.1002/pssr.201206202
http://dx.doi.org/10.1063/1.4803084
http://dx.doi.org/10.1063/1.4803084
http://dx.doi.org/10.1063/1.4803084
http://dx.doi.org/10.1063/1.4803084
http://dx.doi.org/10.1103/PhysRevB.87.235426
http://dx.doi.org/10.1103/PhysRevB.87.235426
http://dx.doi.org/10.1103/PhysRevB.87.235426
http://dx.doi.org/10.1103/PhysRevB.87.235426
http://dx.doi.org/10.1103/PhysRevLett.109.055502
http://dx.doi.org/10.1103/PhysRevLett.109.055502
http://dx.doi.org/10.1103/PhysRevLett.109.055502
http://dx.doi.org/10.1103/PhysRevLett.109.055502
http://dx.doi.org/10.1103/PhysRevB.86.195405
http://dx.doi.org/10.1103/PhysRevB.86.195405
http://dx.doi.org/10.1103/PhysRevB.86.195405
http://dx.doi.org/10.1103/PhysRevB.86.195405
http://dx.doi.org/10.1016/j.surfrep.2011.10.001
http://dx.doi.org/10.1016/j.surfrep.2011.10.001
http://dx.doi.org/10.1016/j.surfrep.2011.10.001
http://dx.doi.org/10.1016/j.surfrep.2011.10.001
http://dx.doi.org/10.1103/PhysRevB.87.241409
http://dx.doi.org/10.1103/PhysRevB.87.241409
http://dx.doi.org/10.1103/PhysRevB.87.241409
http://dx.doi.org/10.1103/PhysRevB.87.241409
http://dx.doi.org/10.1063/1.4903248
http://dx.doi.org/10.1063/1.4903248
http://dx.doi.org/10.1063/1.4903248
http://dx.doi.org/10.1063/1.4903248
http://dx.doi.org/10.1063/1.4913934
http://dx.doi.org/10.1063/1.4913934
http://dx.doi.org/10.1063/1.4913934
http://dx.doi.org/10.1063/1.4913934
http://dx.doi.org/10.1103/PhysRevB.92.195423
http://dx.doi.org/10.1103/PhysRevB.92.195423
http://dx.doi.org/10.1103/PhysRevB.92.195423
http://dx.doi.org/10.1103/PhysRevB.92.195423
http://dx.doi.org/10.1103/PhysRevLett.103.046808
http://dx.doi.org/10.1103/PhysRevLett.103.046808
http://dx.doi.org/10.1103/PhysRevLett.103.046808
http://dx.doi.org/10.1103/PhysRevLett.103.046808
http://dx.doi.org/10.1103/PhysRevLett.103.046809
http://dx.doi.org/10.1103/PhysRevLett.103.046809
http://dx.doi.org/10.1103/PhysRevLett.103.046809
http://dx.doi.org/10.1103/PhysRevLett.103.046809
http://dx.doi.org/10.1103/PhysRevB.81.075438
http://dx.doi.org/10.1103/PhysRevB.81.075438
http://dx.doi.org/10.1103/PhysRevB.81.075438
http://dx.doi.org/10.1103/PhysRevB.81.075438
http://dx.doi.org/10.1098/rsta.2010.0218
http://dx.doi.org/10.1098/rsta.2010.0218
http://dx.doi.org/10.1098/rsta.2010.0218
http://dx.doi.org/10.1098/rsta.2010.0218
http://dx.doi.org/10.1103/PhysRevB.90.035142
http://dx.doi.org/10.1103/PhysRevB.90.035142
http://dx.doi.org/10.1103/PhysRevB.90.035142
http://dx.doi.org/10.1103/PhysRevB.90.035142
http://dx.doi.org/10.1063/1.525355
http://dx.doi.org/10.1063/1.525355
http://dx.doi.org/10.1063/1.525355
http://dx.doi.org/10.1063/1.525355
http://dx.doi.org/10.1088/0953-8984/26/34/345303
http://dx.doi.org/10.1088/0953-8984/26/34/345303
http://dx.doi.org/10.1088/0953-8984/26/34/345303
http://dx.doi.org/10.1088/0953-8984/26/34/345303



