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Magneto-optical transport properties of monolayer WSe2
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The recent experimental realization of a high quality WSe2 leads to the possibility of magneto-optical
measurements and the manipulation of the spin and valley degrees of freedom. We study the influence of
the very strong spin-orbit coupling and of the anisotropic lifting of the valley pseudospin degeneracy on its
magnetotransport properties. The energy spectrum of WSe2 is derived and discussed in the presence of a
perpendicular magnetic field B. Correspondingly we evaluate the magneto-optical Hall conductivity and the
optical longitudinal conductivity as functions of the frequency, magnetic field, and Fermi energy. They are
strongly influenced by the field B and the strong spin splitting. The former exhibits valley polarization and
the latter beatings of oscillations. The magneto-optical responses can be tuned in two different regimes: the
microwave-to-terahertz regime and the visible-frequency one. The absorption peaks involving the n = 0 LL
appear in between these two regimes and show a magnetic control of the spin and valley splittings. We also
evaluate the power absorption spectrum.
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I. INTRODUCTION

Graphene possesses extraordinary properties but its ap-
plication to device fabrication is limited by its zero band
gap which makes graphene transistors suffer from a low
on-off current ratio [1]. This has led to intensive investigation
of alternative materials with a finite band gap including
silicene [2], germanene [3], and the group VI transition-metal
dichalcogenides MX2, M = Mo,W; X = S,Se [4–8]. This
MX2 family is an intriguing class of semiconductors when
thinned down to monolayers. The valence and conduction band
extrema are located at both K and K ′ points at the corners
of the hexagonal Brillouin zone. The K and K ′ points are
related to each other by time-reversal symmetry and give rise
to the valley degree of freedom of the band-edge electrons and
holes [9–12]. It has been demonstrated that a monolayer of
MoS2 has reasonable in-plane carrier mobility, high thermal
stability, and good compatibility with standard semiconductor
manufacturing [5]. These properties render monolayer MoS2

a promising candidate for a wide range of applications,
including photoluminescence at visible wavelengths [9,13],
photodetectors with high responsivity [11], and field-effect
transistors [5,14,15].

Compared to MoS2 the material WSe2 has a much stronger
spin-orbit-coupling (SOC): in the valence band it is 2λ′

v =
450 meV and in the conduction band 2λ′

c = 30 meV. This
and its high quality provide an excellent system for spin and
valley control [16,17]. A high-mobility WSe2 transistor has
been demonstrated at room temperature [18]. Although WSe2

is a direct-band-gap semiconductor (2� = 1.7 eV), the lifting
of the valley degeneracy allows for optical manipulation of
the electron valley index. This has been realized by applying
a magnetic field normal to the two-dimensional (2D) layer;
see Refs. [16,17] which clearly demonstrate the lifting of the
valley degeneracy in WSe2. This is achieved by monitoring
the energy splitting between the two circularly polarized
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luminescence components, σ+ and σ−, associated with optical
recombination in the two valleys.

References [16,17] studied optical transitions in a mono-
layer of WSe2 and related compounds in magnetic fields.
Direct optical transitions in a WSe2 monolayer occur at the
edge of the Brillouin zone, which mainly consists of strongly
localized d orbitals of the transition metal. This is in contrast
with GaAs and other conventional semiconductors used in
optoelectronics in which the direct optical band gap is situated
at the center of the Brillouin zone. In a WSe2 monolayer
there are several possible contributions to the Zeeman splitting
as the emission of circularly polarized light originates from
states with contrasting valley index, spin, and orbital magnetic
moment. As the valleys can be selectively addressed, these
experiments allow the different contributions to the Zeeman
splitting to be determined. A magneto-optical investigation in
high-quality samples of WSe2 appeared in Ref. [19].

Optical transport properties have been evaluated for
graphene and a good agreement exists between theory and
experiment [20]. Magneto-optical properties of topological
insulators (TIs) [21] and other single-layer materials, such
as MoS2 [22] and silicene [23], have also been investigated.
Several properties of WSe2 have been studied at zero magnetic
field [16,17]. In a finite magnetic field though Landau levels
(LLs) are formed and transitions between them generate
specific absorption lines in the magneto-optical conductivity.
We are aware though only of the experimental work [19]
but of no theoretical one on the magnetotransport properties
of WSe2. Accordingly, studying these properties is timely
and expected to increase our understanding of this material.
Further, WSe2 is expected to show strong spin- and valley-
controlled properties [16,17] in contrast to graphene. As will
be shown, an important difference with it and other 2D
systems, in which the magneto-optical response occurs in the
terahertz (THz) regime, is that in WSe2 it can be tuned to
the microwave-to-THz and visible-frequency ranges. This is
similar to phosphorene’s response [24].

In this work we study the ac magnetotransport properties of
a WSe2 monolayer in a perpendicular magnetic field B. Using
the spectrum of this material and general, Kubo-type formulas,
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expressed explicitly in terms of single-particle eigenstates and
eigenvalues, we evaluate the Hall and longitudinal conductiv-
ities as well as the absorption spectrum. In Sec. II we present
the basics of the model, in Sec. III the conductivity expressions
and limited theoretical calculations, and in Sec. III numerical
results. We summarize in Sec. V.

II. MODEL

We consider a monolayer of WSe2 in the (x,y) plane in
the presence of intrinsic SOC, spin and valley Zeeman fields,
and a normal magnetic field B. Extending the 2D, Dirac-type
Hamiltonian of WSe2 for B = 0 [25], we have

Hsη = vF (ησx�x + σy�y) + �σz + ηs(λcσ+ + λvσ−)

+ sMz − ηMv. (1)

Here η = ±1 for valleys K and K ′, � is the mass term
that breaks the inversion symmetry, λc = λc′/2, λv = λ′

v/2,
(σx , σy , σz) are the Pauli matrices for the valence and
conduction bands, σ± = σ0 ± σz, vF (5 × 105 m/s) is the
Fermi velocity, and sz = +1(−1) is the up (down) spin.
Further, Mz = g′μBB/2 is the Zeeman exchange field induced
by ferromagnetic order, g′ the Landé g factor (g′ = g′

e + g′
s),

and μB the Bohr magneton [16,17]. Also, g′
e = 2 is the

free-electron g factor and g′
s = 0.21 is the out-of-plane factor

due to the strong SOC. The last term, Mv = g′
vμBB/2, breaks

the valley symmetry of the levels and g′
v = 4 [16,17]. Further,

� = p + eA is the 2D canonical momentum with vector
potential A. Using the Landau gauge with A = (0,Bx,0) and
diagonalizing the Hamiltonian (1) gives the eigenvalues

Esη,γ
n = sη(λc + λv) + sMz − ηMv + γEsη

n , (2)

where E
sη
n = [n�

2ω2
c + �2

sη]1/2, ωc = (2eB/�)1/2 is the cy-
clotron frequency, γ = ±1 represents electron and hole states,
respectively, and �sη = � + sη(λc − λv). The eigenvalues
(2) become simpler upon noticing the inequality �ωc � �sη.
Expanding the square root in E

sη
n gives

Esη,γ
n ≈ sη(λc + λv) + sMz − ηMv + γ�sη + γ n

�
2ω2

c

2�sη

. (3)

This is a usual, linear in n and B LL spectrum. Us-
ing �sη � ηsλ the last term is equal γ n(�2ω2

c/2�)(1 +
ηλ). This gives a spin splitting E(s = 1) − E(s = −1) =
2Mz + nηλ(�2ω2

c/�) in the conduction band and 2ηλ −
nηλ(�2ω2

c/�) in the valence band. The term n(�2ω2
c/2�) ∝

nB is about twice as big as Mz and much smaller than λ. It’s
important in the conduction band but negligible in the valence
band in which λ ≈ 450 meV. For very weak fields B the linear
dispersion, due to the huge band gap, has been discussed in
Refs. [4–8,25].

The eigenfunctions corresponding to Eq. (2) are obtained
as

	sη,γ
n = eikyy√

Ly

(
ηC

sη,γ
n φn

D
sη,γ
n φn−1

)
, (4)

where C
sη,γ
n = √

n�ωc/[n�
2ω2

c + (�sη − γE
sη
n )2]1/2 and

D
sη,γ
n =(−�sη + γE

sη
n )/[n�

2ω2
c + (�sη − γE

sη
n )2]1/2; φn(x)

are harmonic oscillator functions. The eigenvalues for n = 0

FIG. 1. Band structure of WSe2 in the absence of a magnetic field
B. The left panel is for the K valley and the right one for the K ′ valley.

are

E
s,+
0 = � + 2sλc + sMz − Mv,

E
s,−
0 = −� − 2sλv + sMz + Mv (5)

and the corresponding eigenfunctions

	
s,+
0 = eikyy√

Ly

(
φ0

0

)
, 	

s,−
0 = eikyy√

Ly

(
0

φ0

)
. (6)

To better appreciate the spectrum (2) one can contrast it with
that for B = 0 given by

Es,η
p = sη(λc + λv) + sMz − ηMv + γ

[
v2

�
2k2 + �2

sη

]1/2
.

(7)

Here γ = 1(−1) denotes the conduction (valence) band, s =
1(−1) is for spin up (down), and η = 1(−1) for the K(K ′)
valley. Further, k is the 2D wave vector. The spectrum (7) is
shown in Fig. 1 versus ka where a = 0.331 nm is the lattice
constant.

We present the eigenvalues given by Eq. (2), as functions of
the field B, in Fig. 2. The top and panel is for the conduction
band and the bottom ones for the valence band with finite
spin Mz and valley Mv Zeeman fields. We find the following.
(i) In contrast to the

√
B dependence in graphene or silicene,

the LLs grow linearly with B. This is obvious from Eq. (3)
which holds well because �ωc � �ηs . (ii) For Mz = Mv = 0
the spin splitting in the conduction band is enhanced due to the
last term in Eq. (3). It is approximately an order of magnitude

FIG. 2. Band structure of MoS2 versus magnetic field B including
spin and valley Zeeman fields. The top panel is for the conduction
band and the bottom ones for the valence band.
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FIG. 3. Fermi level of WSe2 as a function of the magnetic field
B for T = 1 K.

larger than Mz term and depends linearly on the LL index n

and field B: for n = 5 it is 33.3 meV at B = 30 T. (iii) As
Fig. 2 shows, the energies of the spin-up (-down) LLs at the
K valley are different than those of the spin-down (-up) at the
K

′
valley. This is in contrast to MoS2 where the spin splitting

is negligible in the conduction band [6]. On the other hand, in
the valence band the spin splitting is 450 meV and is the same
as that for B = 0. (vi) The n = 0 LL is valley degenerate for
Mz = Mv = 0 in both the conduction and valence bands.

The density of states (DOS) is given by

D(E) = 1

S0

∑
n,η,s,ky

δ
(
E − Esη,γ

n

)
, (8)

where S0 = LxLy is area of the system. The sum over ky

can be evaluated using the prescription (k0 = Lx/2l2)
∑

ky
→

(Ly/2π )gsgv

∫ k0

−k0
dky = (S0/D0)gsgv, D0 = 2πl2; gs and gv

are the spin and valley degeneracy factors. We use gs = gv = 1
in the present work due to the lifting of the spin and valley
degeneracies. The Fermi level EF is obtained from the electron
concentration nc given by

nc =
∫ ∞

−∞
D(E)f (E)dE = (gs/D0)

∑
n,η,s

f
(
Esη,γ

n

)
, (9)

where f (Esη,γ
n ) = (1 + exp[β(Esη,γ

n − EF )])−1 is the Fermi-
Dirac function with β = 1/kBT .

The magenta solid curve in Fig. 3 shows EF , obtained
numerically from Eq. (9) for realistic values of nc = 1 ×
1017 m−2, as a function of B; the LLs shown are the same as
those in Fig. 2, i.e., spin and valley dependent, since the mag-
netic field lifts the spin and valley degeneracies of the n � 1
LLs. The additional intra-LL small jumps result from the lifting
of these degeneracies; the solid and dashed curves (n � 1) are,
respectively, for spins up and spins down in the K valley. For
the K ′ valley the spins are reversed, e.g., for n � 1, the spin-up
electrons in the K valley have the same energy as the spin-
down ones in the K ′ valley. For n � 1 the fourfold degeneracy,
due to spin and valley, of all LLs is lifted while the n = 0 LL
in the conduction band for K valley and in the valence band
for K ′ valley. The results for EF in Fig. 3, with Mz 
= 0 and
Mv 
= 0, correspond to the fourfold nondegenerate LLs.

Assuming a Gaussian broadening of the LLs, for zero
temperature, the DOS per unit area given in Eq. (8) is written as
D(E) = (gsgv/(D0�

√
2π ))

∑
n,s exp [−(E − E

sη,γ
n )2/2�2],

FIG. 4. Dimensionless density of states as a function of the field B

for a LL width � = 0.05
√

B meV (black curve) and � = 0.1
√

B meV
(red curve). The two panels differ only in the range of the B field
(x axis).

where � is the width of the Gaussian distribution [26]. The
DOS is shown in Fig. 4 as a function of the magnetic field,
� = 0.05

√
B meV (solid black), � = 0.1

√
B meV (dotted

red), and realistic values of nc = 1 × 1017 m−2 [19]. We
obtained the SdH oscillations as a function of magnetic field
in the conduction band with equally spaced LLs. In weak
magnetic fields B the level broadening effect is significant due
to the small LL separation, whereas in strong fields it may
become weaker due to �’s dependence on the field as

√
B and

the strong LL separation.
As in the case of a 2DEG [27], the beating is due to the

closeness of the frequencies of the spin-up and spin-down
states that result from the splitting of the LLs due to the
SOC. The beating shows up at low fields and the splitting
of the oscillations becomes more pronounced at high fields.
The beating persists in the conduction band for magnetic
fields up to about 10 T. Above this value it is quenched and
the SdH oscillations are split. This behavior is explained by
the closeness of the oscillation frequencies of the SOC-split
LLs. The magnetic-field-enhanced splitting in the conduction
band mixes the spin-up and spin-down states of neighboring
LLs into two unequally spaced energy branches. The beating
appears when the subband broadening is of the order of �ωc.
For high magnetic fields the SOC effects weaken and the
beating pattern is replaced by a splitting of the peaks, which
persist due to the SOC and Zeeman energies

III. LINEAR-RESPONSE CONDUCTIVITY EXPRESSIONS

We consider a many-body system described by the Hamil-
tonian H = H0 + HI − R · F(t), where H0 is the unperturbed
part, HI is a binary-type interaction (e.g., between electrons
and impurities or phonons), and −R · F(t) is the interaction of
the system with the external field F (t) [28]. For conductivity
problems we have F(t) = eE(t), where E(t) is the electric field,
e the electron charge, R = ∑

ri
, and ri is the position operator

of electron i. In the representation in which H0 is diagonal the
many-body density operator ρ = ρd + ρnd has a diagonal part
ρd and a nondiagonal part ρnd . For weak electric fields and
weak scattering potentials, for which the first Born approxi-
mation applies, the conductivity tensor has a diagonal part σd

μν

and a nondiagonal part σnd
μν , σμν = σd

μν + σnd
μν , μ,ν = x,y.

In general we have two kinds of currents, diffusive and
hopping, with σd

μν = σ dif
μν + σ col

μν , but usually only one of
them is present. When a magnetic field is present we have
only hopping current since the diffusive part σ dif

μν vanishes
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identically due to vanishing velocity matrix elements as is
evident, for quasielastic scattering, by its form [28]

σd
μν(ω) = βe2

S0

∑
ζ

fζ (1 − fζ )
vνζ vμζ τζ

1 + iωτξ

, (10)

where τζ is the momentum relaxation time, ω the frequency,
and vμζ the diagonal matrix elements of the velocity operator.
Further, fζ = [1 + exp β(Eζ − EF )]−1 is the Fermi-Dirac
distribution function, β = 1/kBT , T the temperature, EF the
Fermi level, and S0 the area of the sample. In our case vμζ = 0
and the conductivity given by Eq. (10) vanishes. As for the ac
hopping conductivity σ col

μν , it is given by Eq. (2.64) of Ref. [28];
in strong fields B is much smaller than the contribution σnd

μν

given below, and is neglected.
Regarding the contribution σnd

μν one can use the iden-
tity fζ (1 − fζ ′)[1 − exp β(Eζ − Eζ ′)] = fζ − fζ ′ and cast the
original form [28] in the more familiar one

σnd
μν (ω) = i�e2

S0

∑
ζ 
=ζ ′

(fζ − fζ ′) vνζζ ′ vμζ ′ζ

(Eζ − Eζ ′)(Eζ − Eζ ′ + �ω − i�ζ )
,

(11)
where the sum runs over all quantum numbers |ζ 〉 ≡ |n,s,ky〉
and |ζ ′〉 ≡ |n′,s ′,k′

y〉 with ζ 
= ζ ′. The infinitesimal quantity ε

in the original form [28] has been replaced by �ζ to account

for the broadening of the energy levels. Here vνζζ ′ and vμζζ ′

are the off-diagonal matrix elements of the velocity operator.
Using Eqs. (1) and (3) for the K valley gives

vx,n,n′ = v
[
Csη,γ

n D
sη,γ ′
n′ δn,n′−1 + Dsη,γ

n C
sη,γ ′
n′ δn−1,n′

]
δky,k′

y
,

(12)

vy,n′,n = −iηv
[
C

sη,γ ′
n′ Dsη,γ

n δn
′
,n−1 −D

sη,γ ′
n′ Csη,γ

n δn
′−1,n

]
δky,k′

y
.

(13)

Similarly, by exchanging n with n′ only in the Kronecker δ’s
one obtains the results for the K ′ valley. Since |ζ 〉 ≡ |n,s,ky〉,
there will be one summation over ky which, with periodic
boundary conditions for ky , gives the factor S0/2πl2. As usual,
the matrix elements between the n = 0 LL and the other LLs
are treated separately. Using Eqs. (1) and (3), we arrive at

vx,n,n′ = v
[
D

sη,γ ′
n′ δ0,n′−1 + Dsη,γ

n δ0,n−1
]
, (14)

vy,n′,n = −iv
[
D

sη,γ ′
n′ δ0,n′−1 − Dsη,γ

n δ0,n−1
]
. (15)

Similarly, by replacing D with C in Eqs. (14) and (15), we
obtain the results for the K ′ valley. Using Eq. (12) into Eq. (11),
we obtain the longitudinal component σnd

xx as

σnd
xx (ω) = iσ0

∑
s,η,n,n′,γ,γ ′

(
f

sη,γ
n − f

sη,γ ′
n′

)[
D

sη,γ
n C

sη,γ ′
n′ δn−1,n′ + C

sη,γ
n D

sη,γ ′
n′ δn+1,n′

]
(
E

sη,γ
n − E

sη,γ ′
n′

)(
E

sη,γ
n − E

sη,γ ′
n′ + �ω − i�

) . (16)

The matrix elements of the velocity operators are nonzero only for n′ = n ± 1. Summing over n′ and seting σ0 = �e2v2
F /(2πl2)

we arrive at

σnd
xx (ω) = iσ0

∑
s,η,n,γ,γ ′

[(
f

sη,γ
n − f

sη,γ ′
n−1

)
D

sη,γ
n C

sη,γ ′
n−1

I
γ,γ ′
n,n−1

(
I

γ,γ ′
n,n−1 + �ω − i�

) +
(
f

sη,γ
n − f

sη,γ ′
n+1

)
C

sη,γ
n D

sη,γ ′
n+1

I
γ,γ ′
n,n+1

(
I

γ,γ ′
n,n+1 + �ω − i�

)
]
, (17)

where I
γ,γ ′
n,n±1 = E

sη,γ
n − E

sη,γ ′
n±1 . After making the changes n − 1 → m → n in the first sum, we combine the two sums and obtain

σnd
xx (ω) = iσ0

∑
s,η,n,γ,γ ′

[(
f

sη,γ

n+1 − f
sη,γ ′
n

)
D

sη,γ

n+1 C
sη,γ ′
n

I
γ,γ ′
n+1,n

(
I

γ,γ ′
n+1,n + �ω − i�

) +
(
f

sη,γ
n − f

sη,γ ′
n+1

)
C

sη,γ
n D

sη,γ ′
n+1

I
γ,γ ′
n,n+1

(
I

γ,γ ′
n,n+1 + �ω − i�

)
]
. (18)

In the limit � → 0, ω → 0, and γ = γ ′ Eq. (16) yields zero. Now, one needs to sum over all possible combinations of the
matrix elements and for convenience we write

∑
γ,γ ′ = ∑

+,+ +∑
−,− +∑

+,− +∑
−,+ . Here the subscript +/− denotes the

conduction/valence band. After performing the summation over γ,γ ′, we obtain the real part of σnd
xx as

Reσnd
xx = −σ0

∑
η,s,n

{(
f

sη,+
n − f

sη,+
n+1

)
�

(
D

sη,+
n+1 C

sη,+
n

)2

I
+,+
n,n+1[(I+,+

n,n+1 + �ω)2 + �2]
+

(
f

sη,−
n − f

sη,−
n+1

)
�

(
D

sη,−
n+1 C

sη,−
n

)2

I
−,−
n,n+1[(−I

−,−
n,n+1 + �ω)2 + �2]

+
(
f

sη,−
n+1 − f

sη,+
n

)
�

(
D

sη,−
n+1 C

sη,+
n

)2

I
−,+
n+1,n[(I−,+

n+1,n + �ω)2 + �2]
+

(
f

sη,−
n − f

sη,+
n+1

)
�

(
D

sη,+
n+1 C

sη,−
n

)2

I
−,+
n,n+1[(I−,+

n,n+1 + �ω)2 + �2]

}
. (19)

Similarly, exchanging C with D in Eq. (17) gives the results for the K ′ valley. Following the same procedure as opted for the
n � 1, we obtained the real part of the optical longitudinal conductivity for the n = 0 LL as

Reσnd
xx = −σ0

∑
η,s

{[
f

sη,+
0 − f

sη,+
1

]
�

(
D

sη,+
1

)2

I
+,+
0,1 (I+,+

0,1 + �ω)2 + �2
+

[
f

sη,−
0 − f

sη,−
1

]
�

(
D

sη,−
1

)2

I
−,−
0,1 (−I

−,−
0,1 + �ω)2 + �2

+
[
f

sη,−
1 − f

sη,+
0

]
�

(
D

sη,−
1

)2

I
−,+
1,0 (I−,+

1,0 + �ω)2 + �2
+

[
f

sη,−
0 − f

sη,+
1

]
�

(
D

sη,+
1

)2

I
−,+
0,1 (I−,+

0,1 + �ω)2 + �2

}
. (20)

045415-4



MAGNETO-OPTICAL TRANSPORT PROPERTIES OF . . . PHYSICAL REVIEW B 94, 045415 (2016)

Combining Eqs. (10), (12), and (13), carrying out the sum over n′, and making the changes n − 1 → m → n in one of the sums,
we obtain

σnd
xy (ω) = σ0

∑
s,η,n,γ,γ ′

[(
f

sη,γ

n+1 − f
sη,γ ′
n

)
D

sη,γ

n+1 C
sη,γ ′
n

I
γ,γ ′
n+1,n

(
I

γ,γ ′
n+1,n + �ω − i�

) −
(
f

sη,γ
n − f

sη,γ ′
n+1

)
C

sη,γ
n D

sη,γ ′
n+1

I
γ,γ ′
n,n+1

(
I

γ,γ ′
n,n+1 + �ω − i�

)
]
. (21)

Now following the same procedure as the one adopted for the nondiagonal longitudinal conductivity (17), we obtain the imaginary
part of the optical Hall conductivity as

Imσnd
xy (ω) = −σ0

∑
η,s,n

{(
f

sη,+
n − f

sη,+
n+1

)
�

(
D

sη,+
n+1 C

sη,+
n

)2

I
+,+
n,n+1[(I+,+

n,n+1 + �ω)2 + �2]
−

(
f

sη,−
n − f

sη,−
n+1
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}
. (22)

The results for the K ′ valley can be obtained by exchanging C with D in Eq. (19). Following the same procedure as the one
adopted for n � 1, we obtain the imaginary part of the optical Hall conductivity for the n = 0 LL as

Imσnd
xy (ω) = −σ0

∑
η,s

{[
f
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1
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�
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�
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D
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1
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0,1 + �ω)2 + �2

}
. (23)

IV. NUMERICAL RESULTS AND DISCUSSION

The energies of the positive branch levels in Eq. (2) are
different than those of the negative branch due to different
values of the SOC energy. Because �ωc << �, the intraband
and interband transitions in WSe2 belong to two completely
different regimes: the intraband transitions occur in the
microwave-to-THz and the interband ones in the visible
frequency range. We first consider the latter ones (n′ = n ± 1).
Unlike graphenelike 2D systems, the huge band gap and strong
SOC in the WSe2 spectrum have important implications for
the peaks seen in Reσnd

xx (ω) and Imσnd
xy (ω) as a function of

the light frequency. This is shown in Fig. 5 for a temperature
T = 5 K and a level broadening � = 0.2

√
B meV. We take

B = 30 T in order to have well-resolved LLs. The black solid
curve is for EF in the gap (EF = 0.0 eV), while the red dotted
curve is for EF = 0.892 eV. This value falls between the
n = 3 and n = 4 LLs. The optical selection rules allow n to
change by only 1. In addition one needs to go from occupied
to unoccupied states through the absorption of photons. For
EF = 0 the peaks occur at �ω = E+

n+1 + E+
n for integer n. The

FIG. 5. Real part of the longitudinal optical conductivity as a
function of the photon energy for a field B = 30 T. The two panels
differ only in the frequency range (x axis).

series of peaks corresponds to allowed interband transitions in
the LL structure. The peak spacing is proportional to B and
can be seen even at weaker fields, say, for B � 10 T. Similar to
graphenelike 2D systems, the spectral weight of the interband
peaks is continuously redistributed into the intraband peaks.
This shows how the conductivity changes as EF moves through
the LLs. In contrast to graphene in which the SOC is very weak,
the strong spin splitting in WSe2 leads to beating patterns in
σxx as seen in the right panel of Fig. 5. For low frequencies
though, σxx doesn’t show any beating pattern due to the well
separated spin-up and spin-down states which do not mix at
these frequencies; cf. left panel of Fig. 5.

In Fig. 6 we replot Reσnd
xx (ω) with only the n = 0 LL taken

into account. A magnetic control of the valley polarization can
be clearly seen as the corresponding peaks in two different
valleys appear at different frequencies. In addition to the
valley-controlled transport, the spin splitting of the peaks into

FIG. 6. As in Fig. 5 but with only the n = 0 LL taken into account.
The spin assignment of the curves follows from Eq. (5).
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FIG. 7. Real part of the right-polarized optical conductivity σ+(ω)
and of the left-polarized one σ−(ω) versus photon energy for EF =
0.0 eV and field B = 30 T.

two in each valley is due to the strong SOC. The spin and valley
splittings can be understood with the help of Eq. (5) and the
corresponding energies. This is in line with the experimental
realization of the valley-controlled dynamics of particles in
WSe2 at the Dirac point due to the Zeeman term [16,17]. In
the pure Dirac case the spin and valley peaks occur at the same
frequency and hence cancel out perfectly in contrast to the four
distinct peaks in WSe2 shown in Fig. 6. In graphene only the
first peak occurs in this conductivity component; higher-order
peaks are absent due to the cancellation just described. By
contrast, if we increase the value EF so that it falls between
the positive n = 3 and n = 4 LLs (EF = 0.885 eV) the peaks
don’t cancel each other due to the asymmetric SOC splittings
in the two bands. We note that the lower peaks disappear as
EF moves to higher LLs.

The peak structure just described above for Reσnd
xx (ω) and

Imσnd
xy (ω) importantly affects their behavior for right (+) and

left (−) polarized light. For real experiments that probe the
(circular) polarization of resonant light, as in the case of the
Kerr and Faraday effects, one evaluates the quantity σ±(ω)
given by

σ±(ω) = Reσnd
xx (ω) ∓ Imσnd

xy (ω), (24)

with the upper (lower) sign corresponding to right (left) polar-
ization [20,21]. In Fig. 7 we show σ−(ω) (solid black curve)
and σ+(ω) (solid red curve) as functions of the frequency, both
for EF = 0.0 eV in the gap, using the parameters of Fig. 5.
As seen, there is a direct correspondence between these results
and those of Fig. 5. The heights of the peaks in σ+(ω) are
much smaller than those in σ−(ω). Similar to the behavior
of Reσnd

xx (ω) and Reσnd
yx (ω), spin and valley splittings can be

clearly seen in Fig. 8, in which the spin aspects of the curves
are the same as in Fig. 6. We see four peaks due to the spin and
valley splittings in accordance with Eq. (5) and in line with
the observation of valley-controlled dynamics of particles in
WSe2 [16,17].

The difference between σ−(ω) and σ+(ω) is also reflected
in the power absorption spectrum given by

P (ω) = (E/2)[σxx(ω) + σyy(ω) − iσyx(ω) + iσxy(ω)]. (25)

FIG. 8. As in Fig. 7 but with only the n = 0 LL taken into account.

We recall that σμν = σd
μν + σnd

μν = σnd
μν since the compo-

nent σd
μμ, μ = x,y, vanishes. The component σnd

yy (ω) is given
by σnd

xx (ω) and Imσnd
xy (ω) = −Imσnd

yx (ω). The spectrum P (ω)
is shown in Fig. 9 as a function of the photon energy for
two values of EF . Given that Imσnd

xy (ω) is much smaller
than Reσnd

xx (ω), cf. Fig. 5, the peaks in it are essentially the
same as those in the longitudinal optical conductivity. The
absence of the n � 4 peaks for EF = 0.982 eV is due to Pauli
blocking and consistent with Fig. 5. Similar to the Reσnd

xx (ω)
and Reσnd

yx (ω), spin and valley splittings can be clearly seen
in Fig. 10, where we see four peaks due to these splittings in
accordance with Eq. (5). We find that by changing EF from
zero to a finite value, the power absorption peaks only for one
valley, as in Figs. 5–10.

Now we consider intraband transitions between the nth
and (n + 1 )th LLs in the conduction band, with EF > 0,
in which the energy change is much smaller than EF . This
involves large values of n and is known as the semiclassical
limit of the magneto-optical conductivity in which EF is much
larger than �ωc. Let us assume that EF ≈ E+

n lies between
the nth and (n + 1)th LLs. The pertinent energy difference is
E+

n − E+
n+1 = −�ωc. For such transitions we obtain

Reσnd
xx (ω) = −σ0

∑
η,s,n

(
f

sη,+
n − f

sη,+
n+1

)
�

(
D

sη,+
n+1 C

sη,+
n

)2

I
+,+
n,n+1[(I+,+

n,n+1 + �ω)2 + �2]
.

(26)

FIG. 9. Power spectrum vs photon energy for an electric field
E = 8 V/nm, two values of EF , and field B = 30 T.
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FIG. 10. Power spectrum vs photon energy for an electric field
E = 8 V/nm, two values of EF , field B = 30 T, and only the n =
0 LL taken into account. The spin assignment of the curves follows
Eq. (5) and is identical to that of Fig. 6. The outer peaks are for the
K ′ valley and the inner ones for the K valley.

The real part of σnd
xx (ω) is shown in Fig. 11. As seen, the

optical spectral weight under these curves increases with EF .
These peaks lie in the range of microwave-to-THz frequencies
and their height is larger than that of the interband transitions
shown in Figs. 5–10. This is consistent with graphene or
topological insulators and other symmetric 2D systems in
which the relevant spectral weight increases with EF , see,
e.g., Fig. 7 of Ref. [29], and the optical features appear in the
THz regime only [29,30].

V. SUMMARY

We studied spin- and valley-controlled magneto-optical
transport properties of a WSe2 monolayer subject to a
perpendicular magnetic field. We showed periodic oscillations

FIG. 11. Intraband limit of the real part of the longitudinal optical
conductivity versus photon energy, two values of EF , and B = 30 T.
The energy �ω is measured from the bottom of the conduction band.

with frequency of the conductivities due to the absorption
of photons corresponding to LL transitions induced by the
pertinent selection rules. Due to the large direct band gap of
WSe2 the conductivity peaks depend linearly on B and reflect
the equidistant LLs in each band. The intraband and interband
optical transitions in WSe2 belong to two completely different
regimes: the intraband one is in the microwave-to-THz range
and the interband one in the visible frequency range. The
absorption peaks for the n = 0 LL appear in between these
two regimes and, as Figs. 6 and 10 demonstrate, a magnetic
control of the valley and spin splittings is possible. These
findings expand the horizon of the electronic properties of a
2D WSe2 system and could be useful in the design of spintronic
and valleytronic optical devices.
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