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Spin- and valley-dependent transport through arrays of ferromagnetic silicene junctions
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We study ballistic transport of Dirac fermions in silicene through arrays of barriers, of width d , in the presence of
an exchange field M and a tunable potential of height U or depth −U . The spin- and valley-resolved conductances
as functions of U or M , exhibit resonances away from the Dirac point (DP) and close to it a pronounced dip
that becomes a gap when a critical electric field Ez is applied. This gap widens by increasing the number of
barriers and can be used to realize electric field-controlled switching of the current. The spin ps and valley pv

polarizations of the current near the DP increase with Ez or M and can reach 100% for certain of their values.
These field ranges widen significantly by increasing the number of barriers. Also, ps and pv oscillate nearly
periodically with the separation between barriers or wells and can be inverted by reversing M .
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I. INTRODUCTION

Silicene, a monolayer of silicon atoms forming a two-
dimensional (2D) honeycomb lattice, has been predicted to be
stable [1] and several attempts have been made to synthesize
it [2–5]. It has attracted considerable attention [6] because,
due to its honeycomb lattice, it has Dirac cones similar to
those of graphene but with some important differences induced
by the buckled structure of its lattice. Contrary to graphene,
silicene has a strong intrinsic spin-orbit interaction (SOI),
which leads to a gap of approximately 1.55 meV wide [7,8]
in the low-energy band structure. The buckled structure is
a remarkable property of silicene that graphene does not
possess and can facilitate the control [8,9] of its band gap by
the application of an external perpendicular electric field Ez.
Accordingly, silicene could overcome difficulties associated
with potential applications of graphene in nanoelectronics
(lack of a controllable gap) due to the available spin and
valley degrees of freedom. This and its compatibility with
silicon-based technology led to ample studies of important
effects, such as the spin- and valley-Hall effects [7,10–12], the
quantum anomalous Hall effect [9,13], spin-valley coupling
[14], etc. For a review see Ref. [15].

The strong SOI in silicene [16] can lead not only to spin-
resolved transport, but also to a cross correlation between the
valley and spin degrees of freedom. Further, silicon has a
longer spin-diffusion time [17,18] and spin-coherence length
[19] compared with graphene [20], thus making silicene appear
even more suitable for spintronics applications. Notice, for
instance, the very recently reported field-effect transistors [21].

In earlier works several novel features have been studied,
such as ferromagnetic (FM) correlations [22] and resonant
transport through double barriers [23] in graphene, the con-
ductance [24] across FM strips on the surface of a topological
insulator or on silicene [25,26].
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The study of the influence of electric and exchange fields
on ballistic transport through single [25,27] and double [27]
FM barriers on silicene led to novel results such as a field-
dependent transport gap and near perfect spin and valley
polarizations. Naturally, one wonders whether a better control
can be obtained if one uses multiple barriers or wells and how
the reported effects carry over to arrays of barriers. To our
knowledge this has not been done and is the subject of this
study.

The main findings of this work are as follows. A gap
develops in the charge conductance gc not only when U

[27] is varied but also when the strength M of the FM field
is; it widens by increasing the number of barriers. We also
quantify the spin and valley polarizations and show that the
ranges of M in which they are near 100% widen significantly
by increasing the number of barriers. In addition, we show
that for wells the conductance gc oscillates with M but the
polarizations are much smaller than those for barriers. All these
quantities oscillate nearly periodically with the separation
between barriers or wells.

The paper is organized as follows. In Sec. II we present
results for the spin- and valley-resolved transmission through
one or several FM junctions. In Sec. III we show that the charge
conductance can be controlled by Ez or M and discuss the
effects of the field M on the charge, spin, and valley transport
through one or several barriers or wells. We conclude with a
summary in Sec. IV.

II. TRANSPORT THROUGH A FM JUNCTION

We study ballistic electron transport across a FM strip in
silicene with a metallic gate above it which extends over a
region of width d [see Fig. 1(a)]. The effective Hamiltonian
for low-energy fermions is given by [16]

Hη = �υF (τxkx − ητyky) + �ηsz
+ UI − szMI

+ λR1(ητxσy − τyσx)/2 + ηaλR2(kyσx − kxσy)τz. (1)

Here η = ±1 distinguishes between the K and K ′ valleys,
υF ≈ 5 × 105 m/s is the Fermi velocity, and a ≈ 3.86 Å is
the lattice constant. The first term in Eq. (1) is the familiar
Dirac-type Hamiltonian. The second term �ηsz

= �z − ηszλso
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FIG. 1. (Color online) (a) Schematics of the scattering of a particle by a barrier, with θ the angle of incidence and φ that of refraction. The
vectors �k and �q represent the wave vectors inside (II) and outside (I, III) the barrier, respectively. (b) A single potential barrier: U denotes its
height, d its width, and M the exchange field. (c) A double barrier with interbarrier separation w. (d), (e) Arrays of identical barriers and wells.

describes the intrinsic SOI in silicene through λso and controls
the SOI gap through the perpendicular electric field term
�z = e
Ez with 2
 ≈ 0.46 Å the vertical separation of the
two sublattices that is due to the buckled structure. The band
gap is suppressed if the electric field is at its critical value
of approximately Ec ≈ λso/e
 ≈ 17 mV/Å. The third term
represents the barrier potential due to the gate voltage, and the
term MI the exchange field due to a FM film; I is the identity
matrix. Further, sz = ±1 represents spin-up (↑) and spin-down
(↓) states, and σi and τi are the Pauli matrices of respectively
the spin and the sublattice pseudospin.

The first term on the second line of Eq. (1) denotes a weak
extrinsic Rashba term, due to the field Ez, of strength λR1 ∝
Ez. The buckling referred to above is also responsible for a
small intrinsic Rashba effect [7] of strength λR2 ≈ 0.7 meV;
this is the last term in Eq. (1). These Rashba terms [28] result
from the mixing of the σ and π orbitals due to atomic SOIs
and, in the extrinsic case, the Stark effect. In general, they
arise when the inversion symmetry of the lattice is broken.
In silicene, however, these terms are very small and can be
neglected. The extrinsic Rashba effect slightly affects the gap
at the Dirac point, which closes when the field strength is

Ec = ±(λso/e
)
(
1 − λ2

R1/4λ2
so

)
; (2)

the correction term ∝ λ2
R1 accounts only for 0.4%. The term

∝ λR2 increases the kinetic energy by a2λ2
R2k

2, which is
negligible (10−9%) compared to the main contribution �

2υ2
F k2.

Our numerical results have first been calculated using the
complete four-spinor description of Eq. (1) outlined in the
Appendix. In line, though, with Refs. [9,13] we found no
sizable differences between them and those obtained with these
terms neglected. Accordingly, we neglect them in the rest of
this paper.

In Fig. 2 we show the energy spectrum corresponding to
Eq. (1) for Ez = Ec. At this value of the field the gap of
spin-down electrons closes (remains open) at the K(K ′) valley;
the inverse occurs for spin-up electrons. By changing Ez and
M the gaps change in size and energy range respectively. This

figure suggests the polarization mechanism discussed in this
work. Indeed, by tuning Ez and or M one can make the Fermi
level EF move up or down and have only one or both spin states
occupied. This affects the propagating modes of a certain spin
and valley type at EF and leads to spin or valley polarization,
see also Refs. [25,27].

A. Transmission and resonances

The eigenfunctions of Eq. (1) in regions I, II, and III
can be written in terms of incident and reflected waves and
are matched at the interfaces between these regions. The
calculation is based on the one presented in Ref. [29] and its
details are given in the Appendix. If we neglect the very small
[9,13] Rashba terms, the Hamiltonian becomes block diagonal
and the eigenfunctions become two-component spinors instead
of the four-component spinors given in the Appendix. This
gives simple analytic expressions. The transmission through a
single barrier reads

Tηsz
(kx,ky) = 1

1 + sin2(dqx)[F 2(kx,qx,ky) − 1]
, (3)

FIG. 2. (Color online) Energy spectrum of silicene in the K

valley (left) and K ′ valley (right) of the spin-up (blue curve) and
spin-down (red dashed curve) electrons. The applied electric field is
at its critical value Ez = Ec.
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where

F (kx,qx,ky) = k2
xε

2
b + q2

x ε
2
o + k2

y(εb − εo)2

2kxqxεbεo

, (4)

with εb = E − U − szMb + λso + szηEz,be
 and εo = E −
szMo + λso + szηEz,oe
. The subscripts b and o indicate the
corresponding quantities in the barrier (b) and outside it (o).
Equation (3) is more general than that of Refs. [25,27] because
the fields Ez and M are present in the entire structure whereas
in Refs. [25,27] they are present only in the barriers. It reduces
to their result for Ez = M = 0 outside the barrier. Notice that
for qxd = nπ , n integer, the transmission is perfect. These
Fabry-Pérot resonances occur when half the wavelength of the
wave inside the barrier fits n times inside it.

A considerable simplification of Eq. (3) occurs at normal
incidence (ky = 0):

Tηsz
(kx,0) = 1

1 + sin2(dqx)(α − α−1)2/4
, (5)

where α = kεb/qεo. From this analytical result the difference
with the graphene result T = 1 is clear. Due to the SOI and the
field Ez the factor α differs from 1. Setting Ez = λso = 0, one
obtains α = 1, i.e., the well-known graphene result T = 1, no
matter what the barrier width d is. This unimpeded tunneling
at normal incidence, called Klein tunneling, also takes place
if the electric field attains its critical value Ec. In this case,
however, only the spin-up (spin-down) electrons at the K (K ′)
point experience the Klein effect. The origin of this partial
Klein tunneling can be found in Eq. (3) when the condition
F 2(kx,qx,0) = 1 is satisfied.

The transmission probability through two barriers can also
be calculated. The result is

T (2)
ηsz

(kx,ky) = 1

1 + sin2(dqx)(F 2 − 1)4R2
ε

, (6)

with

Rε = cos(wkx) cos(dqx) + F sin(wkx) sin(dqx). (7)

With w = 0 in Eq. (6) one obtains the transmission through a
single barrier, cf. Eq. (2), of width 2d. Again the function F

will be responsible for Klein tunneling at normal incidence.
Because both barriers are taken to have the same width, single-
barrier resonances are maintained. The factor Rε , however,
allows for an additional resonance pattern in the total double-
barrier system.

For n barriers the transmission amplitude is given by

t (n)
ηsz

= {e−ikx l[cos(dqx) + iF sin(wkx)]n

−�(n − 1)eikx l in sinn(dqx)Gn−2(F 2 − 1)}−1, (8)

where �(x) is the Heaviside θ function; also

l = (n − 1)w + (n − 2)d, (9)

G = [iky(εo − εb) + kxεb]2 − q2
x ε

2
o

2kxqxεbεo

. (10)

For more than two barriers the additional resonances, that
occurred in the two-barrier case, fade away but the single-
barrier Fabry-Pérot resonances become sharper.

B. Conductance and polarizations

The spin- and valley-resolved conductance is given by

gszη = g0

∫ π/2

−π/2
Tszη(θ ) cos θ,dθ, (11)

where g0 = e2kF Ly/2πh, and Ly is the length of the barrier
along the y direction. The total charge conductance gc is
obtained by summing Eq. (11) over η and sz.

Making use of the measurable conductance, we can define
the spin polarization as

ps = (g↑K + g↑K ′) − (g↓K + g↓K ′)

g↑K + g↓K + g↓K ′ + g↑K ′
, (12)

with ps = 1(−1) if the electrons are fully polarized in the up
(down) mode. Analogously, we define the valley polarization
by

pv = (g↑K + g↓K ) − (g↑K ′ + g↓K ′)

g↑K + g↓K + g↓K ′ + g↑K ′
. (13)

Here pv = ±1 corresponds to a current that is localised
completely in the K (K ′) valley.

III. NUMERICAL RESULTS

We first present results for transmission, conductance, and
spin and valley polarizations through one or several barriers
and then those for one or several wells. The calculations are
done using the four-component spinors given in the Appendix
and the fields Ez and M are everywhere. However, since
the Rashba terms are indeed very small [9,13], there is no
discernible difference, in the parameter ranges used, between
the four-component spinor results and the analytic ones based
on Eqs. (2)–(5) and (7). Accordingly, we show results for the
case these terms are neglected and the fields Ez and M are
inside the barriers.

A. Barriers

In Fig. 3 we present (E,θ ) contour plots of the spin
resolved transmission through one, two, and ten barriers in
the first, second, and third row, respectively, at the K valley.
The left (right) column is for spin-up (spin-down) electrons.
The electric field is chosen to be the critical field Ec as
defined above. Accordingly, the spin-down electrons have a
gapless and linear energy spectrum and therefore for normal
incidence (θ = 0) the transmission for this state is 1 due to
Klein tunneling. Since the spin-up state’s spectrum still shows
a gap, there are no propagating modes in the barrier if the Fermi
energy is close to U . Thus, the transmission is suppressed in
an energy region of the size of the gap around the top of the
barrier.

Moving to the second row of Fig. 3, for two barriers, one
sees additional resonances. Remarkably they also appear in the
gap indicating that they correspond to localized states in the
region between the barriers. Note, however, that they disappear
as we move to the third row (10 barriers). This is because
the additional resonances appearing for n = 2 are due to a
confinement in the total barrier structure and become highly
damped for n = 10. The only resonances that are undamped
in this case are the single-barrier resonances since they are
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FIG. 3. (Color online) (E,θ ) contour plots of the transmission
probability through 1,2, and 10 barriers in the first, second, and third
row, respectively. The left (right) column is for spin-up (spin-down)
electrons at the K point. The dashed white curves show the resonances
calculated by Eq. (14) and the dotted white curves correspond to the
solutions of Rε = 0 from Eq. (7). In the white region in the left
column the transmission is undefined due to the lack of propagating
states outside the barrier. Parameters used: d = 100 nm, w = 50 nm,
M = 0λso, Ez = Ec, and U = 50 meV.

shared by all barriers. These resonances are sharper since
the near-resonance evanescent modes that contribute to the
transmission are suppressed because the effective length of
the barrier is larger. The same mechanism also renders the gap
in the transmission wider for θ = 0.

The shape of the Fabry-Pérot resonances in the (E,θ ) plane
can be understood by applying the condition qxd = nπ for the
energy. The result for the simplified case where Ez = M = 0
is (r = nπυF /V d)

E(θ )/U = sign U ± [1 + (r2 − 1) cos2 θ ]1/2/ cos2 θ. (14)

This relation is shown as dashed lines in Fig. 3. For the
values of n for which r2 − 1 is small, the energy solutions

FIG. 4. (Color online) (a) and (b): conductance through n barriers
versus electric field Ez for M = λso and M = 4λso respectively. (c)
and (d): Conductance versus M for Ez = Ec and Ez = 5Ec, respec-
tively. Other parameters: d = 100 nm, w = 50 nm, U = 50 meV
and E = 40 meV.

become approximately independent of θ , which corresponds
to resonances at low energies almost independent of θ . For
other values of n the resonant energies behave proportional to
1/ cos2 θ .

Because experimentally one measures the conductance and
not the transmission, we show in Fig. 4 the conductance as a
function of the field Ez (first row) and of the field M (second
row) for 1,3, and 10 barriers as indicated. We see that the
conductance is symmetric with respect to both Ez and M , it
is reduced by increasing the number of barriers, and, perhaps
more important, it develops a gap, i.e., it vanishes, when plotted
versus M , for very strong fields Ez. The physical origin of the
transport gap lies in the suppression of evanescent modes as
Ez increases. For one barrier this is similar to the transport
gap of the conductance, plotted versus the energy at the Dirac
point [27]. If EF is fixed at the correct value, there are no
propagating modes inside the barrier region. The field M can
then be used to shift the spectra of both spins so as to coincide
with EF . This gives rise to the observed abrupt increase in the
conductance as a function of M . With many barriers in the
system, the contribution of evanescent modes near the edges
of the gap is exponentially suppressed. Therefore, the gap is
widened and sharpened.

Because evanescent tunneling is suppressed with the num-
ber of barriers, the spin ps and valley pv polarizations are
altered as shown in Fig. 5 versus M . For one barrier this is
similar to the ps or pv results (versus U/EF ) of Ref. [27].
Notice, though, that the M ranges of near perfect ps and pv

widen with the number of barriers.
In Fig. 6 we show the dependence of the conductance, spin

and valley polarization on the fields Ez and M . The results
show that it is possible to achieve independently a strong spin
and valley polarization by a proper tuning of these fields. For
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FIG. 5. (Color online) Spin (a) and valley (b) polarizations
through n barriers versus exchange field M . Parameters used:
d = 100 nm, w = 50 nm, Ez = 5Ec, E = 40 meV, and U = 50 meV

example, at the position marked with ×, the current is polarized
in the K ′ valley (pv = −1) but also consists only of spin-up
particles (ps = 1). The use of multiple barriers makes this
polarization more pronounced. The maps in Fig. 6 enable one
to select the desired ps and pv by tuning the fields Ez and M .

The spin and valley polarizations in Fig. 6 are shown for
the Fermi level just beneath the height of the potential barrier

FIG. 6. (Color online) Conductance (top), spin (middle), and
valley polarization (bottom) through two (left column) and ten (right
column) barriers as a function of the electric and exchange field.
The unit for the conductance plots is g0. The symbol × indicates
the parameters for which the current is polarized in the K ′ valley
and only consists of spin-up particles. Parameters used: d = 100 nm,
w = 50 nm, E = 40 meV, and U = 50 meV.

FIG. 7. (Color online) (M,Ez) contour plots of the spin (left) and
valley (right) polarizations through ten barriers for EF > U . The
position of the symbol × is the same as in Fig. 6. Parameters used:
d = 100 nm, w = 50 nm, E = 60 meV, and U = 50 meV.

U , i.e., EF ≡ E = 0.8U . In contrast, in Fig. 7 we shown them
for 10 barriers in the reverse case, i.e., for EF = E = 1.2U .
The results are opposite to the ones shown in Fig. 6 and show
that tuning EF is another way of selecting the desired spin
and valley polarization. Again considering the position of the
× symbol, the current is K-valley- (pv = 1) and spin-down
polarized (ps = −1).

We can also exploit the additional degree of freedom given
by the barrier separation w to tune the polarization. In Fig. 8 we
show a (d,w) contour plot of the conductance and polarizations
for two barriers. As shown, increasing the barrier width d has
a progressively detrimental effect on the conductance. But,
thanks to the periodic dependence of all these quantities at
appropriate values of d, it is possible to realize a pure spin
polarization and a valley mixed state as shown in Fig. 8.

We further explore the spin and valley polarizations by
changing the magnetization M of the two barriers indepen-
dently at fixed barrier width d, as shown in Fig. 9, and by
changing the width at fixed M , as shown in Fig. 10. In Fig. 9
M1 and M2 are the FM fields in the first and second barrier,
respectively, and in Fig. 10 d1 and d2 the corresponding widths.
In either figure the left panels are for the conductance, the
central ones for the spin polarization, and the right panels for
the valley polarization. The central panel in Fig. 10 shows a
near perfect spin-up polarization for a very wide range of d1

and d2. This can become spin-down polarization if we reverse
M or change U . In either case we have a perfect spin filter,
say, for di � 7 nm, i = 1,2.

FIG. 8. (Color online) (d,w) contour plot of the conductance
(left) through ten barriers, of the spin polarization (center), and of
the valley polarization (right) for M = λso, Ez = 5Ec, E = 40 meV,
and U = 50 meV. The unit for the conductance plots is g0.
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FIG. 9. (Color online) (M1,M2) contour plot of the conductance
(left) through two barriers, of the spin polarization (center), and of
the valley polarization (right). Parameters used: Ez = 2Ec, d1 = d2 =
100 nm, w = 50 nm, E = 40 meV, and U = 50 meV. The unit for
the conductance plots is g0.

B. Wells

Formally changing U to −U in Eq. (3) allows us to consider
a set of wells as presented in Fig. 1(e). In Fig. 11 we show
(E,θ ) contour plots of the transmission in the presence of
one, two, and ten wells. The left (right) column is for spin-up
(spin-down) electrons. As seen, similar to the case of graphene
[23], for certain angles the transmission is periodic in energy.
Similar to the case of barriers, for the double well there is a
new resonance pattern appearing and for a large number of
wells the resonances become sharper and only those related
to the single-well case survive. Notice that the transmission is
nearly perfect in a wider range of angles θ compared to that
for barriers.

As far as the conductance is concerned, Fig. 12 shows that
its overall behavior, versus Ez and M , is similar to that for
barriers shown in Fig. 4. However, we don’t have a gap versus
M , as in Fig. 4 because now the modes are always propagating.
As for the spin and valley polarizations, they are about one
order of magnitude smaller than those involving barriers and
are not shown.

As a function of the energy, the conductance is shown in
Fig. 13 for n barriers on the left and for n wells on the right.
Notice the difference in the vertical scales and the overall
reduction with increasing n. For n = 1 the behavior is similar
to that of Refs. [25,27] for silicene and Ref. [23] for graphene.
The reduction with increasing n can be understood by the fact
the conductance is mainly governed by evanescent tunneling of

FIG. 10. (Color online) (d1,d2) contour plot of the conductance
(left) through two barriers, of the spin polarization (center), and of the
valley polarization (right). Parameters used: Ez = 2Ec, M1 = M2 =
λso, w = 50 nm, E = 40 meV, and U = 50 meV. The unit for the
conductance plots is g0.

FIG. 11. (Color online) (E,θ ) contour plots of the transmission
through one, two, and ten wells in the first, second, and third row,
respectively. The left (right) column is for spin-up (spin-down)
electrons. The dashed white curves show the resonances calculated
by Eq. (14) and the dotted white curves correspond to the solutions
of Rε = 0. In the white region in the left column the transmission is
undefined due to the lack of propagating states outside the barrier.
Parameters used are: d = 100 nm, w = 50 nm, M = 0λso meV,
Ez = Ec, and U = −50 meV

FIG. 12. (Color online) Conductance over n wells versus (a) the
electric field for M = λso and (b) the exchange field for Ez = 5Ec.
The other parameters are d = 100 nm, w = 50 nm, and U =
−50 meV.
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FIG. 13. (Color online) Conductance through n (a) barriers and
(b) wells over a length Ly = 100 nm as a function of the ratio E/U ,
(E ≡ EF ). The parameters are d = 100 nm, w = 50 nm, M = λso,
Ez = Ec |U | = 50 meV.

modes that are near resonant. This results in a smearing of the
resonances and of the transmission due to Klein tunneling and,
consequently, a decrease of the conductance in the multibarrier
or multiwell system.

IV. SUMMARY AND CONCLUSIONS

The use of multiple barrier and well structures allows
for a new approach in searching for tunable valley and spin
polarizations in silicene. Our analytical results help to clearly
comprehend the transmission resonances in multibarrier and
multiwell structures.

We found that a transport gap in the conductance develops
not only when U is varied [25,27] but also when M is.

For multiple barriers this gap, as well as the spin and
valley polarizations, widen with n because of the suppression
of nearly propagating modes. This same mechanism also
sharpens the resonances found in single barriers.

The quantitative assessment of the conductance and of the
polarizations, as functions of the applied electric and exchange
fields, the width of the barriers or wells and their separation,
suggests a selection of parameters to use in order to obtain
the desired spin and valley polarizations. In this respect, one
may wonder how reasonable the parameters we used are. As a
matter of fact, a typical Ez value is [16] V/6 nm and one for
M , though for graphene [22], it is M = 3 meV. Additionally,
the use of electric field strengths up to 2.7 V/nm have been
reported for bilayer graphene [30]. Accordingly, the range of
the Ez and M values used in our calculations as well as some
critical values of theirs are entirely reasonable. We also notice
that all these quantities oscillate nearly periodically with the
separation between barriers or wells.

Finally we showed that for wells the conductance oscillates
with the exchange field and that the transport gap observed for
barriers is absent.
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APPENDIX: CALCULATION OF THE TRANSMISSION

The Hamiltonian for silicene with a perpendicular electric field Ez and magnetization M at the K point in the basis
{φ↑

A,φ
↓
A,φ

↑
B,φ

↓
B} is given by

HK (�k) =

⎛
⎜⎜⎝

E1(1,1) iλRak̂− υF k̂− 0
−iaλRk̂+ E1(−1,1) 0 υF k̂−

υF k̂+ 0 E1(1, − 1) −iaλRk̂−
0 υF k̂+ iaλRk̂+ E1(−1, − 1)

⎞
⎟⎟⎠ (A1)

and at the K ′ point by

HK ′ (�k) =

⎛
⎜⎜⎝

E−1(1,1) −iλRak̂− υF k̂+ 0
iaλRk̂+ E−1(−1,1) 0 υF k̂+
υF k̂− 0 E−1(1, − 1) iaλRk̂−

0 υF k̂− −iaλRk̂+ E−1(−1, − 1)

⎞
⎟⎟⎠, (A2)

where a is the interatomic distance, λR a very small [9,13] SOI
constant, and

Eη(sz,τz) = ηλsoszτz + lEzτz + Mzsz. (A3)

The wave functions � are given by the matrix product

�j = PjEj (x)Cj , (A4)

which, for the K point, are given by:

P1 =

⎛
⎜⎝

1 1 μ μ

ζk1− −ζk1+ ηk2− −ηk2+
ξk1+ −ξk1− χk2+ −χk2−

ν ν 1 1

⎞
⎟⎠, (A5)

E1(x) =

⎛
⎜⎜⎝

eik1x 0 0 0
0 e−ik1x 0 0
0 0 eik2x 0
0 0 0 e−ik2x

⎞
⎟⎟⎠, (A6)
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Cj = (Aj , Bj , Cj , Dj )T , (A7)

where T denotes the transpose and ki± = ki ± iky, i = 1,2.
Also, with aλ = a2λ2

R we have

k1 = [
k2
F1 − k2

y

]1/2
, k2 = [

k2
F2 − k2

y

]1/2
, (A8)

kF1 = [
aλE

2
+ + υ2

F E2
− − �′′

2

](
aλ + υ2

F

)−1/2
, (A9)

kF2 = [
aλE

2
+ + υ2

F E2
+ + �′′

2

](
aλ + υ2

F

)−1/2
, (A10)

�′′
2 = 2σ

√
a2

λN
2 + aλυ

2
F � + N2υ4

F , (A11)

σ = sign
[
M(�zE + λsoM)

(
aλ�z + υ2

F M
)]

, (A12)

� = �2
zE

2
+ + 4�zEλsoM + (

E2
+ + �2

z

)
M2 − M4, (A13)

where E2
± = E2 ± �2

z − λ2
so + M2 and N2 = (�zE +

λsoM)2. Further,

μ = iaλRυF (β − γ )k2
F2

αβγ − (
a2λ2

Rγ + βυ2
F

)
k2
F2

, (A14)

ν = −iaλRυF (β − γ )k2
F1

δβγ − (
a2λ2

Rβ + υ2
F γ

)
k2
F1

, (A15)

ζ = iaλR + υF ν

β
, η = iaλRμ + υF

β
, (A16)

ξ = iaλRν + υF

γ
, χ = iaλR + υF μ

γ
. (A17)

α = (E − lEz − λso − M)

β = (E − lEz + λso + M)
(A18)

γ = (E + lEz + λso − M)

δ = (E + lEz − λso + M)

and at the K ′ point:

P ′
1 =

⎛
⎜⎜⎜⎝

η′k′
1+ −η′k′

1− ζ ′k′
2+ −ζ ′k′

2−
1 1 ν ′ ν ′

μ′ μ′ 1 1

χ ′k′
1− −χ ′k′

1+ ξ ′k′
2− −ξ ′k′

2+

⎞
⎟⎟⎟⎠, (A19)

where k′
i± = k′

i ± iky, i = 1,2. The matrix E′
1(x) is obtained

from E1(x) by changing ki to k′
i . Also, k′

i and k′
Fi are obtained

from ki and kFi by the same change followed by �′′
2 → �′′′

2 .

μ′ = iaλRυF (α′ − δ′)k2
F2

β ′α′δ′ − (
a2λ2

Rδ′ + υ2
F α′)k2

F2

(A20)

ν ′ = −iaλRυF (α′ − δ′)k2
F1

γ ′α′δ′ − (
a2λ2

Rα′ + υ2
F δ′)k2

F1

(A21)

ζ ′ = iaλR + υF ν ′

α′ , η′ = iaλRμ′ + υF

α′ , (A22)

ξ ′ = iaλRν ′ + υF

δ′ , χ ′ = iaλR + υF μ′

δ′ . (A23)

α = (E − lEz − λso − M)

β = (E − lEz + λso + M)
(A24)

γ = (E + lEz + λso − M)

δ = (E + lEz − λso + M)

α′ = (E − lEz + λso − M)

β ′ = (E − lEz − λso + M)
(A25)

γ ′ = (E + lEz − λso − M)

δ′ = (E + lEz + λso + M).

To calculate the transmission through an arbitrary number
of barriers n, we exploit the following property of the transfer
matrix through a single barrier at x = x0:

M(x0) = E−1
1 (x0)P −1

1 P2E2(x0)E−1
2 (x0 + d2)

×P −1
2 P1E1(x0 + d2) = E−1

1 (x0)M(0)E1(x0). (A26)

Then the resulting transfer matrix becomes

Mn = M(0)M(d)M(2d) . . .M[(n − 1)d]

= M(0)E−1
1 (d)M(0)E1(d)E−1

1 (2d)M(0)E1(2d)

. . . E−1
1 ((n − 1)d)M(0)E1[(n − 1)d]

= M(0)E−1
1 (d)M(0)E−1

1 (d)M(0)E−1
1 (d)

. . . E−1
1 (d)M(0)E1[(n − 1)d]

= M(0)
[
E−1

1 (d)M(0)
]n−1

E1[(n − 1)d]. (A27)

The transmission amplitudes t (n)
ηsz

are found by solving the
system of equations

(1 ,r
↑
↑ ,0 ,r

↑
↓ )T = m(t↑↑ ,0 ,t

↑
↓ ,0)T , (A28)

where m is the total transfer matrix of the barrier structure
and T denotes the transpose of the row vectors. Then the
transmission is given by T = |t (n)

ηsz
|2.

All the results so far involve the four-component spinors
(17). If we neglect the very small [9,13] constant λR , the
Hamiltonian (1) becomes block diagonal and the eigenfunc-
tions become two-component spinors. This gives the simple
analytic expressions (2), (4), (5).

[1] G. G. Guzmán-Verri and L. C. Lew Yan Voon, Phys. Rev. B 76,
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