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Magneto-optical transport properties of monolayer phosphorene
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The electronic properties of monolayer phosphorene are exotic due to its puckered structure and large intrinsic
direct band gap. We derive and discuss its band structure in the presence of a perpendicular magnetic field.
Further, we evaluate the magneto-optical Hall and longitudinal optical conductivities as functions of temperature,
magnetic field, and Fermi energy, and show that they are strongly influenced by the magnetic field. The imaginary
part of the former and the real part of the latter exhibit regular interband oscillations as functions of the frequency
ω in the range �ω ∼ 1.5–2 eV. Strong intraband responses in the latter and weak ones in the former occur at
much lower frequencies. The magneto-optical response can be tuned in the microwave-to-terahertz and visible
frequency ranges in contrast with a conventional two-dimensional electron gas or graphene in which the response
is limited to the terahertz regime. This ability to isolate carriers in an anisotropic structure may make phosphorene
a promising candidate for new optical devices.
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I. INTRODUCTION

Graphene possesses extraordinary properties but its ap-
plication in device fabrication is limited by the zero band
gap. Graphene-based transistors suffer from a low on-off
current ratio due to its gapless structure [1,2]. This has lead
to an intensive search for materials with a finite band gap
including silicene [3], germanene [4], MoS2, and other group-
VI transition-metal dichalcogenides [5]. Despite the fact that
these materials show a high on-off ratio, their carrier mobility
is considerably lower than that of graphene and restricts their
applications in electronics and optoelectronics [6]. Moreover,
a very large intrinsic direct band gap in these materials renders
them unsuitable for near-infrared optical telecommunication
and midinfrared applications. Thus the search continues for a
two-dimensional (2D) semiconducting material, with a direct
band gap, high carrier mobility, and with the potential to form
excellent contacts with known electrode materials.

Recent developments in the experimental realization of 2D
phosphorene has attracted much interest due to its potential
applications [7–9]. Unlike graphene, MoS2 and other related
materials, electrons in phosphorene are highly dispersive
and delocalized along the out-of-plane direction [10]. Phos-
phorene has a honeycomb structure of black phosphorous
with large intrinsic direct band gap of 1.52 eV assessed
by tight-binding [11] and density functional theory [12–14].
Compared to graphene, the puckered structure of phospho-
rene exhibits lower symmetry that gives rise to in-plane
anisotropic properties in momentum space. Carrier mobilities
are very high at room temperature and exhibit a strongly
anisotropic behavior in phosphorene-based transistors with
a high on-off ratio [7,8,15]. Due to its highly dispersive
band structure, phosphorene exhibits a high carrier mobility
and a large optical conductivity [13]. A linear dichroism
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has been shown in the computed absorption spectra, in that
the positions of the lowest energy absorption peaks differ
strongly for the two in-plane directions [13]. In addition to the
traditional midinfrared and near-infrared emission, the unique
anisotropic electronic and photonic properties of phosphorene
may allow for the realization of novel optical components
such as polarization sensors and anisotropic plasmonic de-
vices [15]. Already due to its high optical efficiency [16],
phosphorene has shown a high potential for optical device
applications [17].

Optical transport properties of graphene show good agree-
ment between theory and experiments [18]. Magneto-optical
properties of topological insulators [19] and other single-layer
materials, such as MoS2 [20] and silicene [21], have also
been studied. Landau levels (LLs) are formed in the presence
of an external magnetic field. Transitions between the LLs
generate absorption lines in the magneto-optical conductivity
[21] and were used to distinguish between the topological
insulator and normal (band) insulator phases in silicene in
the presence of spin-orbit interaction and staggered potential
[22]. From a fundamental point of view, many efforts have
been made to explore different properties of phosphorene at
zero magnetic field whereas limited work has appeared for
finite magnetic field [23]. Accordingly, studies of magneto-
optical properties are timely and expected to increase our
understanding of this material. As will be shown, an important
difference with graphene and other 2D systems is that their
magneto-optical response occurs in the terahertz (THz) regime
whereas phosphorene’s can be tuned in the microwave-to-THz
and visible frequency ranges.

In this work we study the magneto-optical transport
properties of monolayer phosphorene. In Sec. II we derive and
discuss its band structure in the presence of a perpendicular
magnetic field. Further, using Kubo-type formulas in Sec. III
we evaluate the optical Hall and longitudinal conductivities.
We proceed with a discussion of the results and of the power
absorption spectrum in Sec. IV. We then show briefly the
oscillator strength of the optical transitions in Sec. V and
conclude in Sec. VI.
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II. BASIC EXPRESSIONS

We start with the widely used two-band model for 2D
phosphorene [11,23], in which the low-energy Hamiltonian
is

H =
(

Ee + (
α′�2

x + β�2
y

)
/2 0

0 Eh − (
λ′�2

x + η�2
y

)
/2

)
,

(1)

where α′ = α + γ 2/Eg , λ′ = λ + γ 2/Eg , γ = 8.5 ∗
105 m/s,α = 1/mex = 1/1.47me, β = 1/mey = 1/0.83me,
λ = 1/mhx = 1/10.66me, η = 1/mhx = 1/1.12me, and
Eg = Ee − Eh = 1.52 eV. The minimum of the conduction
band occurs at Ee = 0.34 eV and the maximum of the
valence band at Eh = −1.18 eV. Further, � = p + eA is
the 2D canonical momentum with vector potential A. Using
the Landau gauge A = (0,Bx,0) and diagonalizing the
Hamiltonian (1), we obtain the eigenvalues

Es
n = Es + s(n + 1/2)�ωs

c, n = 0,1,2,3, . . . , (2)

where s = +1(−1) for electrons (holes), Es = Ee/h,
ωs

c = ω
e/h
c with ωe

c = eB/
√

m′
exmey = 2.696ωc, ωh

c =
eB/

√
m′

hxmhy = 2.2076ωc, m′
ex = 1/α′, m′

hx = 1/λ′, and
ωc = eB/me. It is interesting to note that unlike the
anisotropic zero magnetic field dispersion, the LL spectrum is
independent of the in-plane wave vectors. The corresponding
normalized eigenfunctions are

	n,ky
(r) = eiky .y√

Ly

(
φn(ue)
φn(uh)

)
, (3)

where us = ξ s(x − x0)/l and ξ s = √
m′

sxω
s
c/�; l = √

�/eB

is the magnetic length and φn(u) are the harmonic oscillator
functions. If we use the Landau gauge A = (−By,0,0), the
eigenvalues are again given by Eq. (2) and the eigenfunctions
are obtained from Eq. (3) by replacing x with y wherever they
appear.

The density of states (DOS) is given by

D(E) = 1

S0

∑
n,s,ky

δ
(
E − Es

n

)
, (4)

where S0 is the area of the system. The sum over ky in
Eq. (4) is evaluated using the prescription (k0 = Lx/2l2)∑

ky
→ (Ly/2π )gs

∫ k0

−k0
dky = (S0/D0)gs , where D0 = 2πl2

and gs = 2 is the spin degeneracy. The Fermi energy EF is
determined from the electron concentration nc,

nc =
∫ ∞

−∞
D(E)f (E)dE = gs/D0

∑
n,s

f
(
Es

n

)
, (5)

where the Fermi-Dirac distribution function is written as
f (Es

n) = (1 + exp[β(Es
n − E)])−1 with β = 1/kBT . In Fig. 1

(top panel) the magenta solid curve shows EF obtained
numerically from Eq. (5) as a function of B for a realistic value
of the electron density [23], nc = 1 × 1016 m−2, together with
the LLs obtained from Eq. (2).

Assuming a Gaussian broadening of the LLs, Eq. (4)
is rewritten as D(E) = (gs/Dc)

∑
n,s exp [−(E − Es

n)2/2�2],

where Dc = D0�
√

2π and � ∝ √
B is the width of the
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FIG. 1. (Color online) Top: Fermi energy (solid magenta) as a
function of the magnetic field for T = 1 K and density nc = 1 ×
1016 m−2. The dashed curves are the LLs evaluated from Eq. (2).
Bottom: Dimensionless density of states as a function of the magnetic
field B for two different values of the LL width.

Gaussian distribution [24]. The dimensionless DOS at E =
EF , D(EF ) ≡ D(B), is shown in Fig. 1 (bottom panel) as a
function of the magnetic field, for � = 0.2

√
B meV (black

solid curve) and � = 0.1
√

B meV (red dotted curve). For
weak fields B the level broadening is important whereas for
large fields it may become smaller due to the

√
B dependence

since the distance between the LLs increases linearly with B.

III. LINEAR RESPONSE CONDUCTIVITIES

We consider a many-body system described by the Hamil-
tonian H = H0 + HI − R · F(t), where H0 is the unperturbed
part, HI is a binary-type interaction (e.g., between electrons
and impurities or phonons), and −R · F(t) is the interaction of
the system with the external field F (t) [25]. For conductivity
problems we have F(t) = eE(t), where E(t) is the electric
field, e the electron charge, R = ∑

i ri , and ri is the position
operator of electron i. In the representation in which H0 is
diagonal the many-body density operator ρ = ρd + ρnd has a
diagonal part ρd and a nondiagonal part ρnd . For weak electric
fields and weak scattering potentials, for which the first Born
approximation applies, the conductivity tensor has a diagonal
part σd

μν and a nondiagonal part σnd
μν part, σμν = σd

μν + σnd
μν ,

μ,ν = x,y.
In general we have two kinds of currents, diffusive and

hopping, but usually only one of them is present. In the present
problem, due to the magnetic field we have only the hopping
current since the diffusive one vanishes due to vμζ = 0, see
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Eq. (6). For elastic scattering the diffusive part of σd
μν is

given by

σdif
μν (ω) = βe2

S0

∑
ζ

fζ (1 − fζ )
vνζ vμζ τζ

1 + iωτζ

, (6)

where S0 = LxLy , τζ is the relaxation time, ω the frequency,
and vμζ the diagonal matrix elements of the velocity operator.
Further, fζ = [1 + exp β(Eζ − EF )]−1 is the Fermi-Dirac
distribution function with β = 1/kBT , T the temperature and
EF the Fermi level.

The collisional part σ col
μν (ω) of σd

μν is much smaller than
the nondiagonal part σnd

μν (ω) and we neglect it. As for σnd
μν (ω)

given in Ref. [25], one can use the identity fζ (1 − fζ ′)[1 −
exp β(Eζ − Eζ ′)] = fζ − fζ ′ and cast [26] its original form in
the more familiar one

σnd
μν (ω) = i�e2

S0

∑
ζ 
=ζ ′

(fζ − fζ ′ ) vνζζ ′ vμζ ′ζ

(Eζ − Eζ ′)(Eζ − Eζ ′ + �ω + i�)
, (7)

where the sum runs over all quantum numbers |ζ 〉 ≡ |n,s,ky〉
and |ζ ′〉 ≡ |n′,s ′,k′

y〉 provided ζ 
= ζ ′. The infinitesimal quan-
tity ε in the original form has been replaced by � to account
for the broadening of the energy levels. Equation (7) has been
recently applied to phosphorene in the absence of a magnetic
field in Ref. [16]. The evaluation of vνζζ ′ and vμζζ ′ is outlined
in the Appendix. Using Eqs. (1) and (3) we obtain

v
s,s
x,n,n′ = ivs

x(
√

nδn−1,n′ − √
n + 1δn+1,n′ )δky,k′

y
, (8)

v
s,s
y,n′,n = vs

y(
√

n + 1δn′,n+1 + √
nδn′,n−1)δky,k′

y
, (9)

where vs
x = ωs

c/
√

2ξ s and vs
y = (m′

sxω
s
c/

√
2ξ s)(β/η). The

results for s 
= s ′ are given in the Appendix. Since |ζ 〉 ≡
|n,s,ky〉, there will be one summation over ky which, with
periodic boundary conditions for ky , gives the factor S0/2πl2.
Substituting Eq. (8) into Eq. (7), summing over n′, and setting
σ0 = −gs�e2/2πl2, we obtain the longitudinal nondiagonal
conductivity as

σnd
xx (ω) = iσ0

∑
s,s ′,n=1

n
[
f s

n − f s ′
n−1

](
As,s ′

xx

)2

I
s,s ′
n,n−1

(
I

s,s ′
n,n−1 + �ω + i�

)

+ iσ0

∑
s,s ′,n=0

(n + 1)
[
f s

n − f s ′
n+1

](
As,s ′

xx

)2

I
s,s ′
n,n+1

(
I

s,s ′
n,n+1 + �ω + i�

) , (10)

where As,s
xx = vs

x , As,s ′
xx = ve

x − vh
x , and I

s,s ′
n,n±1 = Es

n − Es ′
n±1.

After making the changes n − 1 → m → n in the first sum,
we combine the two sums and obtain

σnd
xx (ω) = iσ0

∑
s,s ′,n=0

(n + 1)

[ [
f s

n+1 − f s ′
n

](
As,s ′

xx

)2

I
s,s ′
n+1,n

(
I

s,s ′
n+1,n + �ω + i�

)

+
[
f s

n − f s ′
n+1

](
As,s ′

xx

)2

I
s,s ′
n,n+1

(
I

s,s ′
n,n+1 + �ω + i�

)]
. (11)

In the limit � → 0, ω → 0 and s = s ′ Eq. (11) yields zero.
The matrix elements of the velocity operators are nonzero only

for n′ = n ± 1. Regarding the sums over s,s ′ for convenience
we write

∑
s,s ′ = ∑

+,+ +∑
−,− +∑

+,− +∑
−,+. Here the

subscript +/− denotes the conduction/valence band. After
performing the summation over s and s ′ we obtain the
absorption spectrum of the real part of σnd

xx (ω) in the form

�σnd
xx (ω) = πσ0

∞∑
n=0

(n + 1)

[
− [f +

n − f +
n+1 ]δ

(
�ωe

c − �ω
)

�ωe
c/(A+,+

xx )2

+ [f −
n − f −

n+1]δ
(
�ωh

c + �ω
)

�ωh
c /(A−,−

xx )2

− [f −
n+1 − f +

n ]δ(I+,−
n,n+1 − �ω)

I
+,−
n,n+1/(A+,−

xx )2

+ [f −
n − f +

n+1]δ
(
I

−,+
n,n+1 + �ω

)
I

−,+
n,n+1/(A−,+

xx )2

]
. (12)

Here I
s,s
n,n+1 = Es

n − Es
n+1 and πδ(x) = �/(x2 + �2). Using

Eqs. (8) and (9) into Eq. (7), and carrying out the sum over
n′ similar to Eq. (10) and then making the changes n − 1 →
m → n in the first sum, we obtain the optical Hall conductiv-
ity as

σnd
xy (ω) = σ0

∑
s,s ′,n=0

(n + 1)

[ [
f s

n+1 − f s ′
n

]
As,s ′

xy

I
s,s ′
n+1,n

(
I

s,s ′
n+1,n + �ω + i�

)
−

[
f s

n − f s ′
n+1

]
As,s ′

xy

I
s,s ′
n,n+1

(
I

s,s ′
n,n+1 + �ω + i�

)]
, (13)

where As,s
xy = (vs

x)2m′
sxβ and As,s ′

xy = (ve
x − vh

x ) ∗ (βm′
exv

e
x −

ηm′
hxv

h
x ). In the ω = � = 0 and s = s ′ = e limit Eq. (13)

yields the quantized Hall conductivity of a 2DEG [26]

σnd
xy (0) = gs

e2

2h

∞∑
n=0

(n + 1)[fn − fn+1]. (14)

Also, apart from the absence of valley degeneracy and the
appearance of (n + 1) instead of (n + 1/2), the dc limit of Eq.
(13) gives results similar to those of graphene [27].

Following the procedure adopted for the component σnd
xx

and using Eq. (10) we obtain

Im σnd
xy (ω) = πσ0

∑
n

(n + 1)

[
− [f +

n − f +
n+1] δ

(
�ωe

c − �ω
)

�ωe
c/A

+,+
xy

− [f −
n − f −

n+1] δ
(
�ωh

c − �ω
)

�ωh
c /A

−,−
xy

+ [f −
n+1 − f +

n ] δ
(
I

+,−
n,n+1 − �ω

)
I

+,−
n,n+1/A

+,−
xy

+ [f −
n − f +

n+1] δ
(
I

−,+
n,n+1 + �ω

)
I

−,+
n,n+1/A

−,+
xy

]
. (15)

IV. DISCUSSION OF RESULTS

The energies of the positive branch levels in Eq. (2)
are different from those of the negative branch due to the
difference in the Es values and cyclotron frequency in each
band (electron/hole). Due to �ωs

c 
 Es , the intraband and
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FIG. 2. (Color online) Band structure at a fixed magnetic field
B = 10 Tesla for conduction (red) and valence band (black). The
dashed curves show the B = 0 spectrum of Eq. (1): it is symmetric
around the � point and consistent with Fig. 1 of Ref. [23] (a). The
arrows indicate possible interband transitions.

interband optical transitions belong to two widely separated
regimes: the former is in the microwave-to-THz range and the
latter in the visible frequency range. We will first consider
the latter, which involve transitions between neighboring
LLs (n′ = n ± 1) and s 
= s ′. In all results shown below
the common parameter are temperature T = 10 K and level
broadening � = 0.2

√
B meV.

Unlike graphene [18], silicene [21,22], and topological
insulators [19], the large intrinsic band gap and the lack of
perfect symmetry between the positive and negative branches
of the phosphorene spectrum, shown in Fig. 2 for B = 0
(dashed curve) and B 
= 0 (straight solid lines), have important
implications for the peaks seen in the real part of σnd

xx (ω) and
the imaginary parts of σnd

xy (ω). In Fig. 3 we plot the former as
a function of the frequency. We consider a rather strong field
B = 10 T so that well-resolved LLs are formed. The value
EF = 0.343 eV is between the n = 0 and n = 1 LLs, whereas
the value EF = 0.356 eV is between the n = 4 and n = 5 LLs.

EF 0.343 eV
EF 0.356 eV

1.50 1.52 1.54 1.56 1.58 1.60
0.0

0.5

1.0

1.5

2.0

ω eV

R
eσ

xx
10

2 e
2
h

FIG. 3. (Color online) Real part of the longitudinal optical con-
ductivity as a function of the photon energy for a field B = 10 Tesla.
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3 e
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h

FIG. 4. (Color online) Imaginary part of the optical Hall conduc-
tivity versus photon energy for a field B = 10 Tesla.

In the latter case the peaks for n � 3 are Pauli blocked and
no longer possible. We notice the equally spaced absorption
peaks. The optical selection rules allow n to change only by 1.
In addition one needs to go from occupied to unoccupied states
through the absorption of a photon. The first peak occurring at
�ω = 1.526 eV represents transitions involving the n = 0 LL.
In fact, it is the sum of the absorption peaks of two transitions
involving the energy differences E+

1 − E−
0 and E+

0 − E−
1 and

is described by the last two terms in Eq. (12). This can also
be understood from the spectrum shown in Fig. 2. A similar
explanation holds for the peaks at �ω = 1.532 eV, �ω = 1.537
eV, etc. The peak spacing is proportional to B and experi-
mentally one should observe such well-spaced peaks even for
modest fields B. In contrast to phosphorene, in graphene and
other 2D systems the spectral weight of the interband peaks
is redistributed into intraband peaks [22,28]. This shows how
the conductivity changes as EF moves through the LLs.

Inspection of Eqs. (12) and (15) shows that the Hall and
longitudinal conductivities are different due to the factors Ass ′

xy

and Ass ′
xx , which reflect the difference between Eqs. (8) and (9).

In Fig. 4 one first sees a positive peak and then a decrease
(dip). This represents interband transitions involving the n = 0
LL similar to Fig. 3 and the energy differences E+

1 − E−
0 and

E+
0 − E−

1 . It can be understood as the sum of the last two
terms in Eq. (15). For the pure Dirac case these two peaks
would occur at the same energy and hence would cancel out
perfectly due to the symmetry of the spectrum. Only the first
peak would remain in the Hall conductivity and all higher
peaks would cancel out [22,28].

In Fig. 5 we show the real part of the longitudinal conductiv-
ity (top panel) and the imaginary one of the Hall conductivity
(bottom panel) versus the field B for �ω = 1.6 eV. Due to
the interband transitions from occupied to unoccupied states
through the absorption of the photon, the oscillation patterns
are similar to those shown in Figs. 3 and 4.

The peak structure just described above for �σnd
xx (ω)

and Im σnd
xy (ω) importantly affects their behavior for right-

polarized (+) and left-polarized (−) light. For real experiments
that probe the (circular) polarization of resonant light, as in the
case of the Kerr and Faraday effects, one evaluates the quantity
σ±(ω) given by

σ±(ω) = �σnd
xx (ω) ∓ Im σnd

xy (ω), (16)
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FIG. 5. Real part of the longitudinal optical conductivity (top)
and imaginary part of the optical Hall conductivity (bottom) versus
field B for photon energy �ω = 1.6 eV.

with the upper (lower) signs corresponding to right (left)
polarization [18,19]. In Fig. 6 we show σ−(ω) (solid black
curve) and σ+(ω) (dotted red curve) as functions of the
frequency using the parameters of Figs. 3 and 4. As seen, there
is a direct correspondence between these results and those of
Figs. 3 and 4. The peaks in σ+(ω) are shifted a bit (downward)
in energy relative to those in σ−(ω). This difference also shows
up in the power absorption spectrum given by

P (ω) = (E/2)[σxx(ω) + σyy(ω) − iσyx(ω) + iσxy(ω)].
(17)

We recall that σμν = σd
μν + σnd

μν = σnd
μν since the compo-

nent σd
μμ,μ = x,y, vanishes. The component σnd

yy (ω) is given
by σnd

xx (ω) with As,s ′
xx replaced by As,s ′

yy , and Im σnd
xy (ω) =

σ
σ
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0.0

0.5

1.0

1.5

2.0

2.5

ω eV

σ
10

2 e
2
h

FIG. 6. (Color online) Real part of the right-polarized optical
conductivity σ+(ω) and of the left-polarized one σ−(ω) versus photon
energy for EF = 0.343 eV and field B = 10 Tesla.
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FIG. 7. (Color online) Power spectrum versus photon energy for
an electric field E = 8 V/nm, for two values of EF and field B =
10 Tesla.

−Im σnd
yx (ω). The spectrum P (ω) is shown in Fig. 7 as a

function of the photon energy for two values of EF . Given that
Im σnd

xy (ω) is much smaller than �σnd
xx (ω), cf. Figs. 3 and 4, the

peaks in it are essentially the same as those in the longitudinal
conductivity. The absence of the n � 3 peaks for EF = 0.356
is due to Pauli blocking and consistent with Figs. 3 and 4.

Now we consider intraband transitions between the nth and
(n + 1)th LLs, for EF > 0, which involve an energy range
much smaller than EF . This involves large values of n and
is known as the semiclassical limit of the magneto-optical
conductivity in which EF is much larger than �ωc. Let us
assume that EF ≈ E+

n lies between the nth and (n + 1)th LLs.
The pertinent energy difference is E+

n − E+
n+1 = −�ωe

c . For
such transitions we obtain

�σnd
xx (ω) = πσ0

∑
n

(n + 1)

[
f +

n+1 − f +
n

]
�ωe

c/(A+,+
xx )2

δ
(
�ωe

c − �ω
)
.

(18)

The real part of σnd
xx (ω) is shown in Fig. 8 by the top

two curves. As seen, the optical spectral weight under these
curves increases with EF . These peaks lie in the range of
microwave-to-THz frequencies and their amplitude is larger
than that of the interband transitions shown in Fig. 3. This is

EF 0.346 eV
EF 0.343 eV

0 2 4 6 8
0

10

20

30

40

ω meV

Im
σ
xy
,R
e σ

xx
e2
h

FIG. 8. (Color online) Intraband limit of the real part (top two
curves) of the longitudinal optical conductivity and of the imaginary
part (bottom two curves) of the Hall conductivity versus photon
energy for two values of EF and B = 10 Tesla. The energy �ω is
measured from the bottom of the conduction band.
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consistent with graphene or topological insulators and other
symmetric 2D systems in which the relevant spectral weight
increases with EF , see, e.g., Fig. 7 of Ref. [28], and the optical
features appear in the THz regime only [22,28,29]. The two
lowest curves show the imaginary part of the Hall conductivity
σnd

xy (ω) for the same values of EF . As seen, apart from the scale,
σnd

xy (ω) shows the same behavior as σnd
xx (ω). The magnitudes

of σnd
xy (ω) and σnd

xx (ω) are different due to the different
values of the velocity components along the x and y axes.
The peaks of all curves occur at ω = ωc.

V. OSCILLATOR STRENGTH

The oscillator strength depends strongly on the symmetries
of the initial- and final-state wave functions and is a function
of the in-plane momentum vector [30]. The strength of an
optical transition is typically characterized by the dipole
matrix element between the initial and final states. Since a
dimensionless quantity is more useful for making comparisons
in different systems, the oscillator strength is often used instead
of the dipole matrix element. It is defined through the A · p
term in the Hamiltonian describing the interaction between the
electron and the electromagnetic field as

On′,n = 2m

�2

∑
s,s ′

(
Es ′

n′ − Es
n

)|〈n′,s ′,k′
y |r|n,s,ky〉|2, (19)

where m = √
m′

sxmsy is the mass of the particles and (Es ′
n′ −

Es
n)/� the frequency involved in the transitions from the

initial to the final states. With the help of Eq. (3), the
relevant matrix element of the position operator (〈n′|r|n〉 ≡
〈n′,s,k′

y |x|n,s,ky〉) is

〈n′,s,k′
y |x|n,s,ky〉 = [x0δn′,n + (1/

√
2ξ s)(

√
n + 1δn′,n+1

+√
nδn′,n−1)]δk′

y ,ky
. (20)

Equations (19) and (20) clearly show the intraband and
interband transitions shown in Figs. 2–8. The transitions follow
the selection rule n′ = n ± 1. It is interesting to physically
interpret the oscillator strength in terms of intraband and
interband transitions. The intraband transitions between the
n and n + 1 states by the absorption of a photon shown in
Fig. 8 are the same as those shown by Eqs. (19) and (20).
For these transitions we have E+

n+1 − E+
n = �ωe

c,s = s ′ = +,
whereas the interband transitions of Figs. 3–7 follow the
rule n′ = n ± 1 but with s 
= s ′. The first absorption peak in
the optical longitudinal conductivity is the sum of the two
transitions E−

n → E+
n+1 and E−

n+1 → E+
n . This corresponds

to the first two peaks in the optical Hall conductivity with the
first being positive and the second negative. The corresponding
energy absorption for the first peak is E+

1 − E−
0 and for

the second one E+
0 − E−

1 . Similarly other peaks follow the
well-defined selection rules between higher LLs. The spacing
between the peaks also depends on the broadening, which we
have fixed. When the Fermi level is in the band and not zero,
the peak heights are suppressed and shifted downward.

VI. SUMMARY

We studied magneto-optical transport properties of mono-
layer phosphorene subject to an external perpendicular mag-
netic field. The relevant conductivities exhibit periodic os-
cillations that can be controlled by the magnetic field B.
In each band the oscillation peaks are equidistant, reflecting
the equally spaced LLs, and show a linear dependence on
B. The intraband and interband optical transitions pertain to
two completely different regimes: the former occur in the
microwave-to-terahertz range and the latter ones in the visible
frequency range. This is in contrast with a conventional 2D
electron gas, topological insulators, and graphene in which
these features appear only in the THz regime. It is also in
contrast with phosphorene’s responses at B = 0, which occur
in the midinfrared to near-infrared regime [8,16,17]. These
findings expand the horizon of the optical properties of 2D
phosphorene and are expected to be useful in the design of
new optical devices.
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APPENDIX A

The velocity operator, obtained from Eq. (1), reads

v = ∂H

∂p
=

(
α′px + βpy

0
0

−λ′px − ηpy

)
. (A1)

For s = s ′ the explicit evaluation of the velocity matrix
elements gives Eqs. (8) and (9) with s = + ≡ e and s = − ≡
h. For s 
= s ′ we obtain explicitly

v
−,+
x,n,n′ = i

(
ve

x − vh
x

)
δky,k′

y

∫ ∞

−∞
dx φn(uh)

× [
√

n′ + 1φn′+1(ue) −
√

n′φn′−1(ue)]. (A2)

Because uh = 1.1ue we set uh = ue in order to have simple
expressions. We then have

I =
∫

dx φ∗
m(uh)φn(ue) ≈ δn,m. (A3)

This gives v
−,+
x,n,n′ = v

+,−
x,n,n′ and v

−,+
y,n′,n = v

+,−
y,n′,n with

v
−,+
x,n,n′ = i

{
ve

x − vh
x

}
[
√

nδn,n′+1 −
√

n′δn,n′−1]δky,k′
y
, (A4)

v
−,+
y,n′,n = {

ve
y − vh

y

}
[
√

n′δn′,n+1 + √
nδn′,n−1]δky,k′

y
. (A5)

To check the approximation (A3) we evaluate explicitly the
integral I for n = m (I vanishes for n 
= m, see Ref. [31]) and
n = 0,1,2,5,10 using the explicit expressions of the Hermite
polynomials, e.g., H0(x) = 1,H1(x) = 2x,H2(x) = 4x2 − 2,
etc. The values we obtain for n = 0,1,2,5,10 are, respectively,
0.997,0.992,0.983,0.924, and 0.742. This shows that the
approximation (A3) is a valid one at least when the magnetic
field is strong and only a few LLs are occupied.
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