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Abstract
We theoretically study electrically tunable magnetoplasmons in a monolayer of silicene or
germanene. We derive the dynamical response function and take into account the effects of
strong spin-orbit coupling (SOC) and of an external electric filed Ez perpendicular to the plane
of the buckled silicene/germanene. Employing the random-phase approximation we analyze
the magnetoplasmon spectrum. The dispersion relation has the same form as in a
two-dimensional electron gas with the cyclotron and plasma frequencies modified due to the
SOC and the field Ez. In the absence of SOC and Ez, our results agree well with recent
experiments on graphene. The predicted effects could be tested by experiments similar to
those on graphene and would be useful for future spintronics and optoelectronic devices.

Keywords: magnetoplamsons, correlation function in RPA, silicene or germanene, spin–orbit
coupling, perpendicular electric field

(Some figures may appear in colour only in the online journal)

1. Introduction

Since its realization as a truly two-dimensional (2D) material,
graphene has attracted much interest, both due to fundamental
science and technological importance in various fields [1, 2].
However, the realization of a tunable band gap, suitable for
device fabrications, is still challenging and SOC is very weak in
graphene. To overcome these limitations researchers have been
increasingly studying similar materials. One such material,
called silicene, is a monolayer honeycomb structure of silicon
and has been predicted to be stable [3]. Already several
attempts have been made to synthesize it [4]. A similar
material is germanene.

Despite controversy over whether silicene has been
experimentally created or not [5], it is expected to be an
excellent candidate materials because it has a strong SOC
and an electrically tunable band gap [6–8]. It’s a single
layer of silicon atoms with a honeycomb lattice structure and
compatible with silicon-based electronics that dominates the
semiconductor industry. Silicene has Dirac cones similar to
those of graphene and density functional calculations showed
that the SOC gap induced in it is about 1.55 meV [6, 7].
Moreover, very recent theoretical studies predict the stability
of silicene on non metallic surfaces such as graphene [9],
boron nitride or SiC [10], and in graphene-silicene-graphene

structures [11]. Besides the strong SOC, another salient
feature of silicene is its buckled structure with the A and B
sublattice planes separated by a vertical distance 2� so that
inversion symmetry can be broken by an external electric field
resulting in a staggered potential [8]. Accordingly, the energy
gap in it and in germanene can be controlled electrically. Due
to this unusual band structure, silicene and germanene are
expected to show exotic properties such as quantum spin- and
valley-Hall effects [8, 12, 13], magneto-optical and electrical
transport [14, 15], etc.

Plasmons are quantized charge excitations due to the
Coulomb interaction and a very important aspect in condensed
matter physics not only from a fundamental point of view but
also from a technological one [16–20]. In the presence of
a magnetic field they are called magnetoplasmons and have
been extensively studied theoretically [21–25] and observed
experimentally [26–28] in graphene. The study of graphene
(magneto)plasmons involves spatial confinement of light
and enables them to operate at terahertz frequencies thus
making it a promising material for optoelectronics. Next
to graphene, which has a very weak SOC and no gap if
not grown on a substrate, is silicene or germanene with
strong SOC and a tunable band gap. So far plasmons in
them have been studied only in the absence of a magnetic
field [29–31].
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The purpose of this work is to study magnetoplasmons in
silicene or germanene. We evaluate the dynamical nonlocal
dielectric response function to obtain the magnetoplasmon
spectrum within the random-phase approximation (RPA). In
particular, we take into account the effect of strong SOC
and of an external electric field Ez applied perpendicular to
its plane. Experiments can be done by incorporating the
effects of SOC and Ez similar to the recent ones [26–28] on
gapless graphene. In section 2 we present the basic formalism,
in section 3 the density-density correlation function, and in
section 4 the magnetoplasmons. Results and their discussion
follow in section 5 and a summary in section 6.

2. Model formulation

We consider silicene or germanene in the (x, y) plane in the
presence of intrinsic SOC and of an external electric field Ez

applied along z axis in addition to a magnetic field B = Bẑ.
Electrons in silicene obey the 2D Dirac-like Hamiltonian [7, 8]

Hη,s = vF(ησx�x + σy�y) + ηsλσz + V σz. (1)

Here η = 1(−1) represents the K ( K ′) valley, V = 2lEz is the
potential due to the uniform electric field Ez, 2l = 0.046 nm is
the distance between the two sublattice planes, and λ = 4 meV
the SOC. For germanene we have 2l = 0.066 nm and λ =
43 meV. Also, σx , σy , σz) are the Pauli matrices that describe
the sublattice pseudospin, vF the electron Fermi velocity, and
s = +1(−1) the up (down) electron spin. Further, Π = p−eA
is the canonical momentum and A the vector potential that
yields B = Bẑ; we use the Landau gauge A = (0, Bx, 0).
After diagonalizing the Hamiltonian we obtain the eigenvalues

Eη,s
n = ±[

�
2ω2

cn + V 2
ξ

]1/2
, E

η,s

0 = −ηVξ (2)

where Vξ = V + ξλ and ξ = ηs. The corresponding
eigenfunctions are

�η,s
n = eikyy√

Ly

(−iCη,s
n φn−1(x̄)

D
η,s
n φn(x̄)

)
,

�
+,s
0 = eikyy√

Ly

(
0

φ0(x̄)

)
, �

−,s
0 = eikyy√

Ly

(
φ0(x̄)

0

)
.

(3)

Here ωc = vF
√

2eB/�, x̄ = x − x0, x0 = l2ky , l = √
�/eB

is the magnetic length, and Ly the length of the silicene
or germannene monolayer along the y direction. Moreover,
φn(x) = e−x2/2Hn(x)/

√
2nn!

√
πl and Hn(x) are the Hermite

polynomials. C
η,s
n and D

ηs
n are the normalization constants

Cη,s
n = [(1 ± Vξ/E

η,s
n )/2]1/2, Dηs

n = [(1 ∓ Vξ/E
η,s
n )/2]1/2.

(4)

The energy spectrum given in equation (2) is degenerate with
respect to the wave vector ky . The eigenfunctions for the K ′

valley can be obtained from equation (3), by interchanging φn

and φn−1, and the corresponding eigenvalues from equation (2)
with η = −1.

3. Density–density correlation function

3.1. Finite frequencies

The dynamic and static response properties of an electron
system are embodied in the structure of the density–density
correlation function which we evaluate in the RPA. The
RPA treatment presented here is by its nature a high-density
approximation that has been successfully employed in the
study of collective excitations in 2D graphene-like systems
both with and without an applied magnetic field [16–24]. It
has been found that the RPA predictions of plasmon spectra
are in excellent agreement with experimental results [26–28].
Following this technique, one can express the dielectric
function as

ε(q, ω) = 1 − vc(q)�0(q, ω), (5)

where vc(q) = 2πe2/κq is the 2D Fourier transform of the
Coulomb potential with wave vector q and κ the effective
background dielectric constant. The non-interacting density–
density correlation function is obtained as

�0(q, ω) = 1

A

∑
n,n′,ky ,k′

y

[f (Eη,s
n ) − f (E

η,s

n′ )]
∣∣〈α′ | e−iq.r | α

〉∣∣2

× [Eη,s
n − E

η,s

n′ + h̄ω + iγ ]−1, (6)

where A is the area of the system and |α〉 = ∣∣n, η, s, ky

〉
.

Here γ is the the width of the energy levels due to scattering
and is an infinitesimally small quantity in samples with high
mobility [28]. The matrix element in equation (6) is evaluated
in the appendix; the result is∣∣〈α′ | e−iq.r | α

〉∣∣2 = Jn,n′(u) = δk′
y,ky−qy

×
{

[Cη,s
n C

η,s

n′ ]Fn−1,n′−1(u) + [Dη,s
n D

η,s

n′ ]Fn,n′(u)
}2

, (7)

where u = l2q2/2. For n � n′ we have [Fnn′(u)]2 =
(n!/n′!)e−uun′−n[Ln′−n

n (u)]2 and for n′ � n the same
expression with n and n′ interchanged. The sum over
ky in equation (6) can be evaluated using the prescription
(k0 = Lx/2l2)

∑
ky

→ Lx

2π
gsgv

∫ k0

−k0

dky = A

D0
gsgv, (8)

where D0 = 2πl2, gs and gv are the spin and valley
degeneracies, respectively. We use gs = gv = 1 in the present
work due to the lifting of the spin and valley degeneracies in
silicene or germanene.

We now use the transformation ky → −ky and the fact
that E

η,s
n (ky) is an even function of ky , see equation (2). Then

if we interchange n and n′ and perform the ky integration using
equations (7) and (8), we can write the non-interacting density–
density correlation function as

�0(q, ω) = 1

D0

∑
n,n′

Jnn′(u)f (Eη,s
n )

[
(Eη,s

n − E
η,s

n′

+h̄ω + iγ )−1 − (E
η,s

n′ − Eη,s
n + h̄ω + iγ )−1

]
. (9)
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Figure 1. Static density–density correlation function in the long-wavelength limit q → 0 versus Fermi energy EF. We vary the field Ez and
the SOC strength λ. Left panel: the dashed and solid a curves are for V = λ = 0 and V = 0 meV and λ = 4 meV. The other two panels are
for V = 7 meV and λ = 4 meV; the middle panel is for the K valley and the the right one for the K ′ valley. The degeneracy of the LLs is
lifted.

The real and imaginary parts of �0(q, ω) can be obtained from
the identity 1/(x ± iγ ) = (℘/x) ∓ iπδ(x) where ℘ denotes
the principal value of 1/x. The real part of equation (9) reads

�1(q, ω) = 1

D0

∑
n,n′

Jnn′(u)[I1(ω) + I1(−ω)], (10)

with
I1(ω) = f (Eη,s

n )/[Eη,s
n − E

η,s

n′ + h̄ω], (11)

while the imaginary part is written as

�2(q, ω) = π

D0

∑
n,n′

Jnn′(u)[I2(ω) − I2(−ω)], (12)

with
I2(ω) = f (Eη,s

n )δ(h̄ω + E
η,s

n′ − Eη,s
n ). (13)

Equations (10)–(13) will be the starting point of our
treatment of magnetoplasmons. Their form makes clear their
even and odd symmetry with respect to ω. These functions are
the essential ingredients for theoretical considerations of such
diverse problems as high-frequency and steady-state transport,
static and dynamic screening, and correlation phenomena.

3.2. Limit ω = q = 0

The non-interacting density–density correlation function is
obtained from equation (6) in the static and long wavelength
limit, ω = q = 0. Thus equation (6) becomes

�0(0, 0) = 1

D0

∑
n,n′,±

f (E
η,s
n ) − f (E

η,s

n′ )

E
η,s
n − E

η,s

n′
, (14)

where the summation over +/− represents electrons/holes.
With the zero-temperature limit, this turns into a series of delta
functions, δ(EF ± E

η,s
n ) [32, 33]. Making the replacement

δ(E) = (�/π)/(E2 + �2), we arrive at

�0(0, 0) = 1

2πD0

∞∑
n=0,±

(2 − δ0,n)�

(EF − E
η,s
n )2 + �2

, (15)

where � is the level width. Then the density–density
correlation function is proportional to the density of states at

the Fermi energy, �0(0, 0) = D(EF). At finite temperatures
though it is given by [32, 33]

�0(0, 0) =
∫ +∞

−∞
[−∂f (E)/∂E] D(E)dE. (16)

The density–density correlation function shows the lifting
of the four-fold degeneracy at EF = 0 (Dirac point) at
zero temperature. At T = 0 and EF = 0 this function
vanishes in the limit of zero SOC and Ez, simply because
it becomes the same as that of graphene at the Dirac point
(EF = 0) with a completely filled valence band and completely
empty conduction band. The corresponding carrier density
vanishes and implies that no intrinsic graphene plasmons
are possible (more generally, Dirac plasmons). This means
that the screening is absent to linear order except for the
renorrmalization of the dielectric constant term. However,
when the Fermi level is away from EF = 0 or at nonzero
temperature, the density–density correlation function shows
doubly degenerate spin ad valley splitting of the Landau
levels (LLs) and the linear screening is expected to become
appropriate. Moreover, these results can be reduced to those
for gappless graphene derived and discussed in [33] (see
figure 1) in the limit of zero SOC and Ez.

We show numerical results of equation (16) as a function
of the Fermi energy in figure 1. We find that the n = 0 LL is
split into four levels and all other LLs (n > 0) into two. The
valley degeneracy is lifted by the application of the field Ez

and the spin degeneracy by the SOC. This is consistent with
the eigenvalues given by equation (2). We use B = 1 Tesla,
T = 3 K, and vary the field energy V = 2lEz and the SOC
strength. The left panel is drawn for V = λ = 0 (dashed
curves) and V = 0 meV and λ = 4 meV (solid curves). The
other two panels are for V = 7 meV and λ = 4 meV; the
middle panel is for the K valley and the the right one for the
K ′ valley.

In figure 1 the SOC and field split the LLs in two groups:
in accordance with equation (2), η, s = ±, we label them as
+ ≡ +, + ≡ −, − and − ≡ −, + ≡ +, −. Every n �= 0 LL
is doubly degenerate in each group and consists of a spin-up
state from one valley and a spin-down state from the other
valley. The LL splitting between the two groups is symmetric
in the valence and conduction band due to the symmetry in
equation (2). The four-fold spin and valley degeneracy of the
n = 0 LL is lifted by the SOC and electric field energy.
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Figure 2. Static density–density correlation function versus the
wave vector q. We vary the electric field energy V and the SOC
strength λ. Black curves: V = λ = 0; red curves V = 0 meV,
λ = 4 meV; blue curves V = 10 meV and λ = 4 meV. The solid and
dashed curves pertain, respectively, to spin up and spin down in the
K valley or spin down and spin up in the K ′ valley. Here we cannot
distinguish between the black (or red) solid and dashed curves as
there is no spin or valley splitting for the chosen parameters.

3.3. Zero frequency

The static limit ω → 0 of equation (6) is obtained with the
help of equations (7) and (8). In this limit Im�0(q, ω) → 0
and equation (6) gives

�0(q, 0) = 1

D0

∑
n,n′

f (E
η,s
n ) − f (E

η,s

n′ )

E
η,s
n − E

η,s

n′
Jnn′(u). (17)

We show numerical results for �0(q, 0) as a function of the
wave vector q in figure 2. We use the parameters B = 5 Tesla,
T = 10 K, and vary the field energy V = 2lEz and the SOC
strength λ. The black curves are for V = λ = 0, the red
ones for V = 0 meV and λ = 4 meV, and the blue curves for
V = 10 meV and λ = 4 meV. The solid and dashed curves
pertain, respectively, to spin up and K valley and to spin down
and K ′ valley.

In the usual 2DEG the screening wave vector is
independent of the carrier density but for graphene or silicene
it is proportional to the square root of the density [16]. First, in
the limit of zero magnetic field B the static correlation function
remains constant and equal to the electronic density of states up
to the wave vector of q = 2kF; there are two contributions to it
that stem from intraband and interband plasmons, respectively.
In the large momentum transfer regime of figure 2, q ∼ 5
(108 m−1, the static screening for the intraband case decreases
linearly with q, which is consistent with the case of gapless
graphene in the limit of zero (see figure 2 of [16] and figure 4
of [32]) and finite [23] magnetic field. There is no possibility
of zero-energy plasmon excitations in the intraband region
(valence or conduction band).

We find a similar behaviour for finite B except in the small
wave vector limit. In contrast with its behaviour at B = 0, the
static correlation function tends to zero as �0(q → 0, 0) ∝ q2

for finite B [23]. This is due to the fact that the main
contribution to it comes from the q = 0 excitations in the

vicinity of EF. Whereas at B = 0 there are q → 0 excitations
whose energy tends to zero, EF now lies in a cyclotron gap
between the highest occupied landau level nF and lowest
unoccupied nF + 1. This gap must be overcome by small-q
excitations, such that its spectral weight approaches zero. The
static correlation function also coincides with the density of
states at EF because the latter vanishes for finite fields B when
EF is in the gap. Further, the oscillatory behaviour of the static
correlation function below 2kF is due to intraband transitions,
whether EF is in the valence or conduction band (nF + 1, nF).

4. Magnetoplasmons

Magnetoplasmons are readily furnished by the singularities of
the function �1(q, ω), from the roots of the longitudinal mag-
netoplasmon dispersion relation obtained from equation (9) as

1 − vc(q)�1(q, ω) = 0, (18)

along with the condition �2(q, ω) = 0 to ensure long-lived
excitations [22, 23, 29, 30], which is in excellent agreement
with high-mobility graphene samples [28].

For weak damping the decay rate γ , determined by
equations (10) and (12), is given by equation 22 of [30].
Since we are primarily interested in the long-wavelength
behavior of undamped magnetoplasmons, described by
γ ∝ �2(q, ω) = 0, we treat them by solving equation (18).
With the help of equation (10) we find its roots are obtained
by solving

1 = e2

kql2

∑
n,n′

Jnn′(u)
[
I1(ω) + I1(−ω)

]
. (19)

Using equation (11) we can write

I1(ω) + I1(−ω) = 2�
η,s

n,n′

h̄2ω2 − (�
η,s

n,n′)2
f (Eη,s

n ), (20)

where �
η,s

n,n′ = E
η,s

n′ − E
η,s
n . Next we expand Jnn′(u) to

lowest order in its argument (low wave-number expansion).
This amounts to considering only the n′ = n ± 1 terms
in equation (19). The inter-Landau level plasmon modes
under consideration arise from neighbouring Landau levels,
that is, from n′ = n ± 1. Then using the expansion [34]

L
l

n(u) =
n∑

m=0

(−1)m (n+l)!
(l+m)!(n−m)!

um

m! for l > 0 and retaining only terms

that are constant or linear in u we get

Jn,n+1(u) → nuGC + (n + 1)uGD, (21)

Jn,n−1(u) → (n − 1)uGC + nuGD. (22)

Here GC = (1 + rξ )/2, GD = (1 − rξ )/2, and rξ =
Vξ/[�2ω2

cn + V 2
ξ ]1/2. The factors GC and GD arise from the

normalization of the eigenstates and in the limit λ = Ez = 0
are both equal to 1/2.

To obtain the magnetoplasmon spectrum, we evaluate
�

ηs

n,n′ for n′ = n ± 1. We find

�
η,s

n,n±1 = ± h̄ωc/(2
[
n + (Vξ/h̄ωc)

2
]1/2

). (23)

4
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Substitution of equations (20)–(22) into equation (19) yields

1 = e2q

κ

∑
n

|�η,s

n,n±1|
�2ω2 − (

�
η,s

n,n±1

)2 f (Eη,s
n ). (24)

For inter-LL excitations near the Fermi energy EF we can
approximate n by nF in �

η,s

n,n±1, where nF is the LL index
corresponding to EF. This gives

�
2ω2 = (h̄2ω2

c/(4
[
nF + (Vξ/h̄ωc)

2
]
)) (25)

×
[
1 +

2e2q
[
nF + (Vξ/h̄ωc)

2
]1/2

κh̄ωc

∑
n

f (Eη,s
n )

]
.

With EF in the conduction band (E2
F = �

2ω2
cnF + V 2

ξ )
equation (25) can be expressed as

ω2 = ω̃2
c + ω̃2

p, (26)

where
ω̃c = ωc

[
h̄ωc/(2(h̄2ω2

cnF + V 2
ξ )1/2)

]
, (27)

and
ω̃p = ωp

[
vF/(h̄

2ω2
cnF + V 2

ξ )1/4
]
, (28)

with ωp = [
e2qπnc/κ

]1/2
and nc = ∑

n

f (E
η,s
n )/(π�2) the 2D

carrier density.
It is interesting that equation (24) can be applied to the

usual 2DEG for which �
η,s

n,n±1 = ±�ωc. Then we obtain
again equation (26) with ω̃c and ω̃p replaced, respectively,

by ωc = eB/m and ωp = [
e2qπnc/κ

]1/2
, that is, the

well-known plasmon dispersion relation. One can also take
the limit Vξ → 0 in equations (24)–(28) and obtain the
dispersion relation for monolayer graphene [23, 28]. Then
�

η,s

n,n±1 = ±�ωc/(2n1/2), ω̃c = ωc/(2
√

nF), and ω̃p =
(vF/(2n

1/4
F

√
�ωc)) ωp.

In the limit of zero magnetic field, equations (26)–(28)
reduce to recent work on silicene and germanene [29, 30].
Moreover, in the limit of zero SOC and Ez, these relations are
the same as that for high-mobility graphene samples [28] and
could be applied to highly doped graphene samples [26, 27]
(for very large nF in equation (25). The q dependence of
equation (26), namely the

√
q behaviour, is common to 2D

electron gas systems while the carrier density dependence is
characteristic of the linear-in-k dispersion relation of massless
Dirac fermions, for which EF = �v

√
πnc. However, in

the present case we can see the effects of gapped silicene
or germanene with massive Dirac fermions and spin/valley
splitting due to the combination of the SOC and the electric
field Ez.

5. Discussion of results

A closer analytical examination of equation (26) shows the
following aspects of the gapped magnetoplasmon spectrum.
If we set Ez = 0 in equation (26) we obtain a SOC-
induced, small-gap magnetoplasmon spectrum. Increasing Ez,
we obtain a larger gap, splitting and tuning of plasmons in
silicene by combining it with the SOC. If we use a field Ez
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Figure 3. Fermi energy as a function of magnetic field for fixed
values V = 10 meV, λ = 4 meV, and nc = 0.5 × 1016 m−2. The
temperature is varied such that T = 10 K (solid) and T = 5 K
(dotted).

comparable to the SOC strength λ, then we expect splitting
of the magnetoplasmon modes due to the combination of the
two in the quantity V + ηsλ. With further increase in Ez ,
e.g. Ez = 2λ we can see an enhanced spin and valley splitting
of the magnetoplasmon spectrum due to the V + ηsλ factor
in equation (21). Moreover, we note that the realization of
topological phase transitions could also be observed in the
magnetoplasmon spectrum if we take Ez zero or less than λ

(spin-Hall regime), comparable to λ (semi-metallic regime),
and then twice λ (valley-Hall regime). The spin-Hall regime
is a topological insulator while the valley-Hall one is a band
insulator. For B → 0 these transitions are consistent with
recent plasmon predictions [29, 30]. Below we consider the
effect of an external field B using the parameters [7, 26–30]:
q = π/100 nm−1, vF = 0.5 × 106 m s−1, λ = 4 meV
for silicene (43 meV for germanene) on SiC with dielectric
constant κ � 4 (different values do not qualitatively affect
the results), and carrier density nc = 0.5 × 1016 m−2 giving
EF = 41.3 meV.

The changes in the density of states D(E) discussed
in section 3 and the approximations used to obtain the
magnetoplasmons are reflected in the dependence of EF, e.g.
on the mangetic field. At finite temperatures the 2D carrier
density nc is nc = ∫ ∞

−∞ D(E)f (E)dE, with D(E) for the LL
spectrum obtained as

D(E) = 1

D0


1

2

∑
η,s

δ(E − E
η,s

0 ) +
∑

n=1,η,s

δ(E − Eη,s
n )


 ;

(29)

the factor 1/2 refers the fact the degeneracy of the zero LL is
half that of the other LLs. Using equation (29) the result for
nc becomes

nc = 1

D0


1

2

∑
η,s

f (E
η,s

0 ) +
∑

n=1,η,s

f (Eη,s
n )


 . (30)

For fixed carrier density, this determines EF implicitly
by solving numerically equation (30). We show the resulting
EF, as a function of the magnetic field B in figure 3, for
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Figure 4. Band structure of silicene as a function of the magnetic field B. The blue curves correspond to λ = V = 0 and the black and red
dotted ones to E+

n and E−
n , respectively. The black dotted line shows EF versus B evaluated numerically using equation (30). In the left

panel we cannot distinguish between the blue and red dotted curves because at λ = V = 4 meV the gap is zero for the (V − λ) curves. In the
middle panel we see a clear degree of spin and valley splitting for λ = 4 meV and V = 10 meV. The right panel, for λ = 4 meV and
V = 15 meV, shows a significant degree of spin and valley splitting by electrical tuning.

V = 10 meV, λ = 4 meV, T = 10 K, and nc = 0.5×1016 m−2.
EF remains constant for low B below 2T, that is, in the limit
of large n; above this value we see the jumps as EF crosses
the LLs.

We present the eigenvalues given by equation (2) as a
function of the field B for fixed values of λ and Ez in figure 4.
We also include the EF versus field B curve (dotted line) for
comparison and further discussion. We find the following: (i)
In the limit of λ = �Ez = 0 (blue curves), we obtain the

√
B

dependence of the LL energies. In contrast, for finite λ and
variable Ez (black and red dotted curves), the energies of the
lower LLs grow linearly with B rather than with

√
B because of

the massive Dirac fermions in silicene or germanene. (ii) The
combination of the field energy V = 2�Ez and λ splits the LLs
in two groups designated as E±

n , with E+
n ≡ E+,+

n = E−,−
n and

E−
n ≡ E−,+

n = E+,−
n . (iii) The energies of the two groups of

LLs in the valence or conduction band have not only different
slopes versus B but also shift rigidly for B → 0 due to the
finite band gap either by λ or by the field Ez. However, every
n �= 0 LL is still doubly degenerate in each group, consisting
of a spin-up state from one valley and a spin-down state from
the other valley. A crossing occurs between the two groups,
which is symmetric in the valence and conduction band due to
the symmetry in equation (2).

In figure 5 we show the magnetoplasmon spectrum
as a function of the field B for fixed EF = 41.3 meV.
For comparison with graphene experiments [28], we show
numerical results using equation (26) for λ = V = 0 (blue
curve). These results agree well with equation (1) and figure
2 of [28], exhibiting dependence on

√
B, if we replace vF =

0.5 × 106 m s−1 by its value in graphene vF = 1 × 106 m s−1.
In the middle panel, for finite λ and V = 2lEz, we found two
curves, the red dotted (V − λ) and black (V + λ) showing a
spin and valley splitting. The red dotted curve is the same as
the blue one and we can’t distinguish between the two because
the gap for the red dotted line vanishes due to λ − 2lEz = 0.
As the gap due to λ and V is small and we are in a highly
doped regime, we can see a split between the red dotted
and black curve for two magnetoplamon modes �ω± defined
as �ω+ = �ω+,+ = �ω−,− and �ω− = �ω−,+ = �ω+,−.
Increasing V = 2lEz = 10 meV, we see an enhanced splitting
between red dotted and black curves for fixed λ = 4 meV
(middle panel). Here the blue and red dotted curves are weakly

separated as the gap vanishes for the blue and red dotted curves
V − λ = 6 meV. With further increase in V , V = 15 meV, we
obtain a further enhanced splitting between the black and red
dotted curves of the magnetoplasmon modes as shown in the
right panel for fixed λ = 4 meV. We also note that the blue and
red dotted lines are well separated as gap is zero for the blue
and V − λ = 11 meV for the red dotted curve.

We contrast our results with those of recent graphene
experiments on high-mobility or weakly doped samples [28],
in the limit λ = 2�Ez = 0, by further decreasing the
Fermi energy close to the Dirac point. First, we show the
magnetoplasmon spectrum as a function of the field B for
EF = 26 meV in figure 6. We found a clear splitting between
the black and red dotted curves for λ = 2lEz = 4 meV (left
panel) as in the left panel of figure 5. As λ and Ez are small
and we are in a weakly doped regime, we can see a strong
splitting for the magnetoplamon modes �ω±. Again here we
cannot distinguish between the red dotted and blue curves for
the same reason as in figure 5. Upon increasing V , e.g. to
V = 10 meV, we see a large splitting between the red dotted
and black curves for fixed λ = 4 meV (middle panel). We can
weakly distinguish between the blue and red dotted curves
here since the gap is V − λ = 6 meV for the red dotted
curve and zero for the blue one. With further increase in V ,
V = 15 meV, we obtain a significant splitting between the
red dotted and black curves of the magnetoplasmon modes as
shown in the right panel. Here we also note that the blue and
red dotted curves are well separated compared to those in the
right panel of the figure 5. Again the results exhibit a square-
root dependence on B and agree with recent graphene theory
[21–25] and experiments [28] in the limit λ = 2�Ez = 0
provided we use vF = 1 × 106 m s−1.

The experimentally observed [28],
√

B dependence of the
spectrum referred to above, in the limit λ = V → 0, applies to
high-mobility weakly-doped graphene samples, see figure 6.
For highly-doped samples [26, 27] though that involve values
of EF � λ, V , with EF of the order of 200–300 meV, the
magnetoplasmon gaps and spilttitings reported above will be
very difficult to achieve as they would require unrealistically
high values of V . Notice though that our analysis for silicene
also holds for germanene, a monolayer of germanium, which
has a much stronger SOC than silicene [7, 8], λ ≈ 43 meV. In
both cases the predicted gaps and spilttings are sizeable for EF

not too far from the Dirac point.
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Figure 5. Magnetopasmons as a function of the magnetic field B for a fixed EF = 41.3 meV. Blue curves correspond to λ = V = 0. Black
and red dotted curves represent �ω+ and �ω−, respectively. In the left panel, with λ = V = 4 meV, we cannot distinguish between the red
and blue dotted curves because at equal amount of V and λ energies, the gap is zero for the (V − λ) curves. The middle panel, for
λ = 4 meV and V = 10 meV, shows a clear signature of spin and valley splitting. The right panel, for λ = 4 meV and V = 15 meV, shows a
significant spin and valley splitting by electrical tuning. The colour code is the same as in figure 4.
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Figure 6. Magnetopasmons as a function of the magnetic field B for a fixed EF = 26 meV. The parameters and curve marking are the same
as in figure 5.

Another feature of our results is the magnetoplasmon
gaps. Although not yet experimentally confirmed, the SOC
induced gap in silicene is about 1.55 meV [6, 7] and is expected
to be observed using existing experimental techniques. In
the present work on electrically tunable magnetoplasmons in
silicene, we have obtained a gap of about 1 meV in figure 5 and
12 meV in figure 6 tuned by an external perpendicular electric
field, which can be further enhanced by increasing this electric
field and lowering the Fermi energy of the system close to
the Dirac point. We believe that this gap can be observed
in experiments similar to those on high-mobility graphene
samples studying magnetoplasmons [28].

A possible extension of our work would be to include an
in-plane electric field and study magneto-electric-plasmons.
One could then use the eigenfunctions and eigenvalues derived
in [36] for Ez = λ = 0 as a starting point.

6. Summary

We showed electrically tunable effects in the magnetoplasmon
spectrum of silicene and germanene due to the spin and
valley polarization. Employing the RPA and including the
effects of SOC and of an external electric field, we found a
significant splitting of the magnetoplasmon spectrum. Our
results agree well with graphene theory and experiments in
the limit of vanishing SOC and electric field provided EF is
not too far from the Dirac point, that is, for weakly-doped
graphene samples [28], if we use graphene’s value for vF. We
expect that experimental studies of these novel phenomena in
silicene, similar to those of [28], will be very appropriate since
they directly bear on the many-body properties of silicene or

germanene. Encouraging in this direction is the very recently
reported local formation of high-buckled silicene nanosheets
realized on a MoS2 surface [35].

Appendix A.

Below we outline the derivation of equation (8). The factor
Jα,α′(u) in equation (7) is given by

Jα,α′(u) = 〈
α′∣∣ ∣∣e−iq·r∣∣ |α〉2

= 〈
α′∣∣ ∣∣e−iq·r∣∣ |α〉 × 〈α| ∣∣eiq·r∣∣ ∣∣α′〉 , (A.1)

where |α〉 = ∣∣s, n, η, ky

〉
. Using the eigenfunctions given by

equation (3), equation (A.1) takes the form〈
α′∣∣ ∣∣e−iq·r∣∣ |α〉 = 1

Ly

∑
n,η,s

∫
dyei(ky−k′

y−qy)y

×
∫ ∞

−∞
dx

(−iCη,s
n φn−1(x̄)

D
η,s
n φn(x̄)

)T

e−iqxx

(−iCη,s
n φn−1(x̄)

D
η,s
n φn(x̄)

)
,

(A.2)

where the superscript T denotes the transpose of the column
vector. With the help of the identity (1/Ly)

∫
dyei(ky−k′

y−qy)y =
δk′

y ,ky−qy
we can write equation (A.2) as〈

α′∣∣ ∣∣e−iq·r∣∣ |α〉 = δk′
y ,ky−qy

∑
n,η,s

[
Fn′,n

(−qx, ky − qy, ky

)

+Fn′−1,n−1
(−qx, ky − qy, ky

) ]
. (A.3)

Similarly,

〈α| ∣∣eiq·r∣∣ ∣∣α′〉 = δk′
y ,ky−qy

∑
n,η,s

[
Fn,n′

(
qx, ky, ky − qy

)

+Fn−1,n′−1
(
qx, ky, ky − qy

) ]
. (A.4)
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Combining equations (A.3) and (A.4), we arrive at

Jn,n′(u) = δk′
y ,ky−qy

∑
n,η,s

[
Fn′,n

(−qx, ky − qy, ky

)

×Fn,n′
(
qx, ky, ky − qy

)
+Fn′−1,n−1

(−qx, ky − qy, ky

)
×Fn−1,n′−1

(
qx, ky, ky − qy

) ]
. (A.5)

Now we proceed with the evaluation ofFn′n
(−qx, ky − qy, ky

)
.

Using the explicit form of the harmonic oscillator functions
φn(x̄) we have

Fn′n
(−qx, ky − qy, ky

) = [Dη,s

n′ D
η,s
n ]

l2
√

π2n2n′
n!n′!

×
∫ ∞

−∞
dX e−(X+l(ky−qy))

2
/2

×Hn′
(
X + l

(
ky − qy

))
e−iqxx e−(X+lky)

2
/2 Hn

(
X + lky

)
,

(A.6)

where X = x/l. Making the change Y = X + lky +
l
(−qy + iqx

)
/2 in equation (A.6) yields

Fn′n
(−qx, ky − qy, ky

) = [Dη,s

n′ D
η,s
n ]√

π2n2n′
n!n′!

e−u2
eil2qx(−qy+2ky)/2

×
∫ ∞

−∞
dY e−Y 2

Hn′
(
Y − l

(
qy + iqx

)
/2

)

×Hn

(
Y − l

(
qy − iqx

)
/2

)
, (A.7)

where u = l2q2/2. The integral over Y is tabulated in [34],
pp. 838 #7.377. The result for n � n′ is

Fn′n
(−qx, ky − qy, ky

) = (
n!/n′!

)1/2
e−u/2+il2qx(−qy+2ky)/2

×
[
l
(
qy − iqx

)
/
√

2
]n′−n

Ln′−n
n (u) . (A.8)

For n′ � n, the result is given by equation (A.8) with n and
n′ interchanged. Using equations (A.5) and (A.8) we arrive at
equation (7),

Jn,n′(u) = ∣∣〈α′∣∣ e−iq·r |α〉∣∣2 = δk′
y ,ky−qy

{
[Dη,s

n′ Dη,s
n ]Fnn′ (u)

+[Cη,s

n′ Cη,s
n ]Fn−1,n′−1 (u)

}2
, (A.9)

with Fnn′ (u) given after equation (7) in the text.
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