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S1. Electrostatic and thermal strain in the proposed GQST devices 
 

1.1  Thermal strain in suspended graphene devices 
 
The total thermal strain in the graphene channel, 𝜀𝜀thermal = (∆𝐿𝐿)thermal/𝐿𝐿, is determined by 
three contributions, the thermal strain from substrate contraction 𝜀𝜀th,sub, the thermal strain 
from gold contraction 𝜀𝜀th,Au, and the thermal strain from expansion of the graphene flake 
𝜀𝜀th,g, as the device is cooled. These are illustrated in Fig. S1(a).  
 
Based on our device geometry, 𝜀𝜀th,sub is given by the thermal strain in the Si substrate. As 
the chip is cooled, the Si contracts and compresses the graphene channel [S1]. The two 
suspended gold beams are deposited on a SiO2 layer, and they clamp the suspended 
graphene. The gold cantilevers contract as they are cooled, applying strain to the 
graphene channel [S2]. Graphene itself has a negative thermal expansion coefficient [S3]. 
From Fig. S1(a), we see that the direction of the thermal expansion of the graphene is 
aligned with the contraction of the gold beams. Because the gold beams’ thermal 
displacements are much larger than the graphene channel’s thermal expansion, the 
stretching of the channel is determined, at low temperature, by the gold thermal 
expansion. The total thermal strain 𝜀𝜀thermal in the channel is given by Eq. S1. 
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Figure S1. Electrostatic and thermal strains in suspended graphene devices. (a) Thermal strains as 
temperature decreases: contraction of the Au film and substrate, and expansion of the graphene channel. 
(b) Electrostatic strain from the attractive force between the back gate and the graphene. 
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(S1a) 

(S1b) 

with 𝛼𝛼Si, 𝛼𝛼Au, and 𝛼𝛼g the coefficients of thermal expansion for silicon, gold, and graphene 
respectively, 𝑢𝑢 = 900 nm is the undercut length, and 𝐿𝐿 = 100 nm is the length of the 
suspended graphene channel. Calculating the individual contributions to strain at 𝑇𝑇 = 1 K 
gives 𝜀𝜀th,sub ≈ −0.04 % [S1], 𝜀𝜀th,Au ≈ 2.6 % [S2], and 𝜀𝜀th,g ≈ −0.2 % [S3]. The total thermal 
strain in the channel is 𝜀𝜀thermal =  𝜀𝜀th,sub + 𝜀𝜀th,Au ≈ 2.6 %.  
 
1.2 Electrostatic strain in a suspended graphene device 
 
An electrostatic strain, 𝜀𝜀G, of the channel arises from the pull of 𝑉𝑉G, as shown in Fig. S1 
(b). There are two separate sources of 𝜀𝜀G: an electrostatic pull on the graphene channel 
𝜀𝜀G,g, and one on the suspended gold cantilevers 𝜀𝜀G,Au. We first mention that given the 
modest 𝑉𝑉G ≤ 10 V needed in experiments, and the thickness of gold beams (120 nm), the 
electrostatic deflection of the beams is completely negligible [S4], thus 𝜀𝜀G,Au = 0 %. The 
strain caused by the gating force directly on the channel is given by [S5]:  

 𝜀𝜀G,g = 𝑃𝑃
𝐿𝐿2

8𝑌𝑌2Dℎ0
, (S2) 

where 𝑃𝑃 =  𝐹𝐹G,g 𝐿𝐿𝐿𝐿⁄ = (𝐶𝐶G𝑉𝑉G)2/2𝜖𝜖0 is the electrostatic pressure on the graphene channel, 
𝐹𝐹G,g is the electrostatic force, 𝑌𝑌2D ≈ 340 N/m is the 2D Young's modulus of graphene, 𝜖𝜖0 is 
the vacuum permittivity, and ℎ0 is the maximum deflection for a parabolic deformation of 
the graphene flake. The value of ℎ0 is calculated from [S5]: 
 

 
�ℎ02 −

3
16

𝐿𝐿∆ 𝐿𝐿� ℎ0 =
3

128
𝑃𝑃𝐿𝐿4

𝑌𝑌2D
, (S3) 

 

where ∆𝐿𝐿 is the built-in stretch (see section 1.1) of the suspended channel, and is positive 
(negative) for tension (compression). The resulting 𝜀𝜀G,g is plotted versus 𝑉𝑉G in Fig. 1(c) of 
the main text, and is typically ~0.01 %. It is negligible compared to both the thermal and 
mechanically controlled strains, and we exclude it from our calculations. 
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S2. Uniaxially-strained graphene: band structure and ballistic transmission  
 

2.1 Transmission in unstrained ballistic graphene 
 
We start with the ballistic transmission in unstrained graphene as a reference point [S6]: 
 

 
𝑇𝑇𝑛𝑛 = �

𝑘𝑘𝑥𝑥𝑘𝑘�𝑥𝑥
𝑘𝑘𝑥𝑥𝑘𝑘�𝑥𝑥 cos�𝑘𝑘�𝑥𝑥𝐿𝐿� − 𝑖𝑖 �𝑘𝑘𝐹𝐹𝑘𝑘�𝐹𝐹 − 𝑞𝑞𝑛𝑛2� sin�𝑘𝑘�𝑥𝑥𝐿𝐿�

 �
2

, (S4) 

where 𝑞𝑞𝑛𝑛 = 𝜋𝜋 𝐿𝐿⁄ (𝑛𝑛 + 1 2⁄ ) is the transversal momentum, 𝑘𝑘𝐹𝐹 = ∆𝜇𝜇contact ℏ𝑣𝑣𝐹𝐹⁄  , and 𝑘𝑘𝑥𝑥 =
(𝑘𝑘𝐹𝐹2 − 𝑞𝑞𝑛𝑛2)1/2 are respectively the total and longitudinal (𝑥𝑥-axis) momenta in the contacts, 
while 𝑘𝑘�𝐹𝐹 = ∆𝜇𝜇G ℏ𝑣𝑣𝐹𝐹⁄  and 𝑘𝑘�𝑥𝑥 = �𝑘𝑘�𝐹𝐹2 − 𝑞𝑞�𝑛𝑛2�

1/2 are respectively the total and longitudinal 
momenta in the channel, 𝑣𝑣𝐹𝐹 =  8.8 × 105 m/s, and 𝑞𝑞�𝑛𝑛 = 𝑞𝑞𝑛𝑛, due to transversal momentum 
conservation across the contact/channel boundary. As in the main text, ∆𝜇𝜇contact is the 
contact doping, while the doping in the channel induced by the back gate is ∆𝜇𝜇G =
sgn(𝑉𝑉G − 𝑉𝑉D)ℏ𝑣𝑣𝐹𝐹�𝜋𝜋(𝑉𝑉G − 𝑉𝑉D)𝐶𝐶G/𝑒𝑒. The conductivity is then [S6]:  

 
𝜎𝜎 =

𝐿𝐿
𝐿𝐿

4𝑒𝑒2

ℎ
� 𝑇𝑇𝑛𝑛,
𝑁𝑁

𝑛𝑛=0 

 (S5) 

where 𝑁𝑁 = Int(𝑘𝑘𝐹𝐹𝐿𝐿 𝜋𝜋⁄ − 1 2⁄ ) is the number of allowed modes set by the Fermi energy 
in the graphene contacts. We set 𝐿𝐿 = 100 nm, 𝐿𝐿 = 1000 nm, and 𝐶𝐶G = 1.7 × 10−8 F/cm2 
(as in the main text). In Fig. S2, we plot 𝜎𝜎 − 𝑉𝑉G data as a function of ∆𝜇𝜇contact ranging from 
−0.2 to 0.2 eV, as well as for the infinite limit. When ∆𝜇𝜇contact ≫ ∆𝜇𝜇G, the allowed carrier 
trajectories are nearly normally incident on the channel, resulting in symmetric behavior 
for electrons and holes. When ∆𝜇𝜇contact ~ ∆𝜇𝜇G a significant electron-hole conductivity 
asymmetry arises.  We define the relative asymmetry as 𝜂𝜂 = 2(𝜎𝜎ℎ − 𝜎𝜎𝑒𝑒)/(𝜎𝜎ℎ + 𝜎𝜎𝑒𝑒), as in 
the main text, Fig. 3(c) and (f). The sign of the asymmetry depends on the sign of the 
contact doping, as seen by comparing the solid and dashed data in Fig. S2. The 
conductivity minimum is 𝜎𝜎 = 4𝑒𝑒2/𝜋𝜋ℎ, as expected for ballistic graphene with 𝐿𝐿 𝐿𝐿⁄ ≫ 1. 

 

Figure S2. 𝜎𝜎 − 𝑉𝑉G in unstrained graphene for various ∆𝜇𝜇contact. The device dimensions are 𝐿𝐿 = 100 nm, and 
𝐿𝐿 = 1000 nm. For large contact doping, there is no transport asymmetry, while for small contact doping, 
the sign of the asymmetry depends on the sign of the contact doping. 



4 
 

2.2 Tight-binding parameter values 
 
In Table S1 we list the tight-binding parameter values used in our calculations.  

Table S1. Tight-binding parameter values used in our calculations: 𝑎𝑎, the nearest neighbor distance, 𝛾𝛾0, 
the nearest neighbor hopping parameter, 𝜈𝜈, the Poisson ratio, 𝛽𝛽, the electronic Grüneisen parameter, and 
𝑔𝑔𝜀𝜀, the strain-induced scalar potential magnitude. 

The nearest neighbor spacing (𝑎𝑎 = 1.42 Å) and hopping parameter (𝛾𝛾0 = −2.7 eV) are 
well established in literature [S7]. The Poisson ratio, 𝜈𝜈, of graphene is most often cited as 
having the value 0.165, based on measurements of the basal plane of graphite [S8]. The 
unitless electronic Grüneisen parameter (𝛽𝛽 = −𝑑𝑑 ln[𝛾𝛾0]/ 𝑑𝑑 ln[𝑎𝑎]) can be measured via 
Raman spectroscopy and has been reported to range from 2 to 3.37 [S8, S10]. In our 
model we use 𝛽𝛽 = 2.5, which is roughly the average reported value. The calculated 
magnitude of the strain-induced scalar potential (self-doping) in graphene has been 
reported over a range, ∆𝜇𝜇𝜀𝜀 = 𝑔𝑔𝜀𝜀(1 − 𝜈𝜈) 𝜀𝜀total = 1.7 eV - 3.75 eV × 𝜀𝜀total. We choose a 
value often cited in literature, from ab. initio calculations, 𝑔𝑔𝜀𝜀 = 3.0 eV [S9]. 
 
2.3 Tight-binding band structure of strained graphene 

 
The real space lattice of graphene, with its zig-zag direction along the 𝑥𝑥-axis (𝜃𝜃 = 0°), is 
shown in Fig. S3(a). The nearest-neighbor vectors are [S8]: 

 
𝜹𝜹1 =

𝑎𝑎
2
ℛ(𝜃𝜃) ∙ �√3, 1�, 𝜹𝜹2 =

𝑎𝑎
2
ℛ(𝜃𝜃) ∙ �−√3, 1�,

𝜹𝜹3 = 𝑎𝑎 ℛ(𝜃𝜃) ∙ (0,−1), 
(S6) 

where the rotation matrix ℛ(𝜃𝜃) accounts for an arbitrary crystal orientation: 

 ℛ(𝜃𝜃) = �cos 𝜃𝜃 −sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 �. (S7) 

The lattice’s primitive vectors are: 
 

𝒂𝒂1 =
𝑎𝑎
2
ℛ(𝜃𝜃) ∙ �√3, 3�, 𝒂𝒂2 =

𝑎𝑎
2
ℛ(𝜃𝜃) ∙ �−√3, 3�. (S8) 

And the corresponding reciprocal lattice vectors, shown in Fig. S3(b), are:  
 

𝒃𝒃1 =
2𝜋𝜋
3𝑎𝑎

ℛ(𝜃𝜃) ∙ �√3, 1�, 𝒃𝒃2 =
2𝜋𝜋
3𝑎𝑎

ℛ(𝜃𝜃) ∙ �−√3, 1�, (S9) 

The 𝒃𝒃1,2 define the first Brillouin Zone (FBZ), whose corners are the 𝑲𝑲𝑖𝑖 points: 
 

𝑲𝑲1 =
4𝜋𝜋

3√3𝑎𝑎
ℛ(𝜃𝜃) ∙ (1,0), 𝑲𝑲2 =

4𝜋𝜋
3√3𝑎𝑎

ℛ(𝜃𝜃) ∙ �−
1
2

,
√3
2
� ,

𝑲𝑲3 =
4𝜋𝜋

3√3𝑎𝑎
ℛ(𝜃𝜃) ∙ �−

1
2

,−
√3
2
�, 

(S10) 

and 𝑲𝑲𝑖𝑖
′ = −𝑲𝑲𝑖𝑖. 

Parameter 𝑎𝑎 𝛾𝛾0 𝜈𝜈 𝛽𝛽 𝑔𝑔𝜀𝜀 

Value 1.42 Å 
[S7] 

−2.7 eV 

[S7] 
0.165 
[S8] 

2.5 
[S8] 

3.0 eV 
[S9] 
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Figure S3. (a) Real space graphene lattice with the zig-zag direction aligned along the 𝑥𝑥-axis (𝜃𝜃 = 0°), 
showing nearest neighbor vectors 𝜹𝜹𝑛𝑛, and primitive vectors 𝒂𝒂1,𝒂𝒂2. Sublattice A (filled circles) and sublattice 
B (open circles) are shown. (b) First Brillouin zone (FBZ) of graphene corresponding to (a), showing the 
reciprocal lattice vectors 𝒃𝒃1,𝒃𝒃2, and 𝐾𝐾𝑖𝑖

(′) points.  

The momentum-space tight-binding Hamiltonian, considering nearest neighbor (nn) 
hopping, 𝛾𝛾0, and next-nearest neighbor (nnn) hopping, 𝛾𝛾0′ , is [S7,S8]: 

𝐻𝐻0 = 𝛾𝛾0�(𝑒𝑒−𝑖𝑖𝒌𝒌⋅𝜹𝜹𝑛𝑛𝑎𝑎𝒌𝒌
†

𝒌𝒌,𝑛𝑛

𝑏𝑏𝒌𝒌 + H.c.) + 𝛾𝛾0′ � ( 𝑒𝑒−𝑖𝑖𝒌𝒌⋅(𝜹𝜹𝑛𝑛−𝜹𝜹𝑚𝑚)(𝑎𝑎𝒌𝒌
†

𝒌𝒌,𝑛𝑛≠𝑚𝑚

𝑎𝑎𝒌𝒌 + 𝑏𝑏𝒌𝒌
†𝑏𝑏𝒌𝒌) + H.c.), (S11) 

where 𝑎𝑎𝒌𝒌
† (𝑎𝑎𝒌𝒌) creates (destroys) an electron on sublattice A, and 𝑏𝑏𝒌𝒌

† (𝑏𝑏𝒌𝒌) do the same on 
sublattice B. The electronic energy dispersion is then given by: 

 𝐸𝐸0 = ±�∑ 𝛾𝛾0𝑒𝑒−𝑖𝑖𝒌𝒌∙𝜹𝜹𝑛𝑛𝑛𝑛 � = ±𝛾𝛾0�3 + 𝑓𝑓(𝒌𝒌) + 𝛾𝛾0′  𝑓𝑓(𝒌𝒌), (S12) 

where  

 𝑓𝑓(𝒌𝒌) = 2 cos�√3𝑘𝑘𝑥𝑥𝑎𝑎� + 4 cos�
√3
2

 𝑘𝑘𝑥𝑥𝑎𝑎� cos �
3
2
𝑘𝑘𝑦𝑦𝑎𝑎� . (S13) 

We can expand Eq. S13 to derive the low energy dispersion around 𝒌𝒌 = 𝑲𝑲 when (𝒌𝒌 −
𝑲𝑲) ≪ 𝑲𝑲. For this low energy expansion, the nnn term in Eq. S12 is nearly constant, and 
results in a rigid shift of the low energy dispersion [S7].  
 
When strain is applied, the real and reciprocal vectors are modified to first order in strain 
as [S8]: 

 𝒂𝒂𝑖𝑖 → (𝑰𝑰�  + 𝜺𝜺�) ⋅ 𝒂𝒂𝑖𝑖 ,        𝒃𝒃𝑖𝑖 → (𝑰𝑰� − 𝜺𝜺�) ⋅ 𝒃𝒃𝑖𝑖, (S14) 

where 𝑰𝑰� is the identity matrix, 𝜺𝜺� is the strain tensor, and 𝑖𝑖 = 1,2. For uniaxial strain in 𝑥𝑥: 

 𝜺𝜺� = �
𝜀𝜀𝑥𝑥𝑥𝑥 𝜀𝜀𝑥𝑥𝑦𝑦
𝜀𝜀𝑦𝑦𝑥𝑥 𝜀𝜀𝑦𝑦𝑦𝑦� = �𝜀𝜀 0

0 −𝜈𝜈𝜀𝜀�, (S15) 

where 𝜈𝜈 is the Poisson ratio. Focusing only on the nn term, the strained Hamiltonian is 

𝐻𝐻 = �(𝛾𝛾𝑛𝑛𝑒𝑒−𝑖𝑖𝒌𝒌∙(𝑰𝑰
�+𝜺𝜺�)∙𝜹𝜹𝑛𝑛𝑎𝑎𝒌𝒌

†

𝒌𝒌,𝑛𝑛

𝑏𝑏𝒌𝒌 + H.c.), (S16) 

with the strain-modified hopping parameter: 
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 𝛾𝛾𝑛𝑛 = 𝛾𝛾0exp[−𝛽𝛽{|(𝑰𝑰�+ 𝜺𝜺�) ∙ 𝜹𝜹𝑛𝑛| 𝑎𝑎⁄ − 1}], (S17) 

This gives the dispersion [S8]: 
 

𝐸𝐸 = ± ��𝛾𝛾𝑛𝑛𝑒𝑒−𝑖𝑖𝒌𝒌∙(𝑰𝑰
�+𝜺𝜺�)∙𝜹𝜹𝑛𝑛

𝑛𝑛

� = ±�𝛾𝛾 + 𝑔𝑔(𝒌𝒌), (S18) 

where 𝛾𝛾 = 𝛾𝛾12 + 𝛾𝛾22 + 𝛾𝛾32, and 
 

𝑔𝑔(𝒌𝒌) = � � 2𝛾𝛾𝑛𝑛𝛾𝛾𝑚𝑚

3

𝑚𝑚>𝑛𝑛

3

𝑛𝑛=1

cos[𝒌𝒌 ∙ (𝑰𝑰� + 𝜺𝜺�) ∙ (𝜹𝜹𝑛𝑛 − 𝜹𝜹𝑚𝑚)]. (S19) 

For small strains, we can expand Eq. S16 to first order in strain [S11]: 
 

𝐻𝐻 = �(𝛾𝛾0 − 𝛾𝛾0
𝛽𝛽
𝑎𝑎2
𝜹𝜹𝑛𝑛 ⋅ 𝜺𝜺� ⋅ 𝜹𝜹𝑛𝑛 − 𝑖𝑖𝛾𝛾0𝒌𝒌 ⋅ 𝜺𝜺� ⋅ 𝜹𝜹𝑛𝑛)𝑒𝑒−𝑖𝑖𝒌𝒌⋅𝜹𝜹𝑛𝑛  (𝑎𝑎𝒌𝒌

†

𝒌𝒌,𝑛𝑛

𝑏𝑏𝒌𝒌 + H.c.). (S20) 

From Eq. S20, we can identify the two distinct changes to the Hamiltonian arising from 
strain. The second term in Eq. S20 is from the strain modification of the electron hopping 
amplitude, as per Eq. S17. The third term in Eq. S20 is from the stretching of the nn 
distances, as per Eq. S16. These two terms will translate into the two types of strain-
induced vector potentials in the Dirac notation of the Hamiltonian. 
 
2.4 Dirac Hamiltonian and vector potentials in uniaxially-strained graphene 
 
We can express the tight-binding Hamiltonian from Eq. S20 in a Dirac form [S8], as shown 
in Eq. S21:  

𝐻𝐻𝐾𝐾𝑖𝑖 = ℏ𝑣𝑣𝐹𝐹(𝑰𝑰�+ (1 − 𝛽𝛽)𝜺𝜺�) ⋅ 𝝈𝝈 ⋅ �𝒌𝒌� − 𝑨𝑨𝑖𝑖� + ∆𝜇𝜇G + ∆𝜇𝜇ε. (S21) 

This Hamiltonian describes the three 𝐾𝐾𝑖𝑖 valleys, and can be modified to describe the three 
𝐾𝐾𝑖𝑖′ valleys by changing the sign of 𝑨𝑨𝑖𝑖. The 𝝈𝝈 are the Pauli spin matrices, and ∆𝜇𝜇G is the 
potential from electrostatic gating. The strain-induced scalar potential [S7, S10] is given 
by ∆𝜇𝜇ε = 𝑔𝑔𝜀𝜀�𝜀𝜀𝑥𝑥𝑥𝑥 + 𝜀𝜀𝑦𝑦𝑦𝑦�, where 𝑔𝑔𝜀𝜀 depends on the change of the nnn hopping with strain. 
For uniaxial strain, the scalar potential is ∆𝜇𝜇ε = 𝑔𝑔𝜀𝜀(1 − 𝜈𝜈)𝜀𝜀. The strain-induced vector 
gauge potentials, 𝑨𝑨𝑖𝑖, depend on the modification of both the nn hoppings and nn 
distances. From expanding about the strained Dirac points [S8], we find the anisotropic 
Fermi velocity tensor 𝒗𝒗�𝐹𝐹 =  𝑣𝑣𝐹𝐹(𝑰𝑰�+ (1 − 𝛽𝛽)𝜺𝜺�), with matrix elements 𝑣𝑣𝐹𝐹,𝑥𝑥𝑥𝑥 = 𝑣𝑣𝐹𝐹(1 +
(1 − 𝛽𝛽)𝜀𝜀) and 𝑣𝑣𝐹𝐹,𝑦𝑦𝑦𝑦 = 𝑣𝑣𝐹𝐹(1 − (1 − 𝛽𝛽)𝜈𝜈𝜀𝜀) for uniaxial strain.  
 
The vector potentials are defined by the shift in the momenta of the Dirac points in 
reciprocal space as shown in Fig. S4. The locations of the Dirac points under stain are 
𝑲𝑲𝐷𝐷,𝑖𝑖 = 𝑲𝑲𝑖𝑖 + 𝑨𝑨𝑖𝑖, where the 𝑲𝑲𝑖𝑖 are the corners of the unstrained FBZ. We show below how 
the vector potentials are calculated.  
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Figure S4. Vector potentials in uniaxially strained graphene. Contour plot of the graphene band structure 
for 𝜀𝜀total = 5.1 % at 𝜃𝜃 = 30°. We show the unstrained FBZ (black), the strained FBZ (red, dashed), and 
strained Dirac points (blue dots). (b) Zoom-in on one FBZ corner. The inset in is a further zoom-in of the 
same data, showing that the new Dirac point does not lie at the corner of the strained FBZ. (c) - (d) The top 
plots show the 𝑥𝑥 and 𝑦𝑦 components of the 𝑨𝑨𝑖𝑖 as a function of 𝜃𝜃. The bottom plots show the two terms, 𝑨𝑨hop 
(solid black) and 𝑨𝑨lat,i (dashed blue) which make up the 𝑨𝑨𝑖𝑖.  

In Fig. S4(a), we show contour plots of the dispersion for graphene with 𝜀𝜀 = 5.1 % at 𝜃𝜃 =
30°, as calculated using Eq. S20, showing the unstrained FBZ (black lines), strained FBZ 
(red dashed lines), and the Dirac point positions (blue dots). In Fig. S4(b), we show a 
zoom-in on one of the Dirac points from panel (a). Here we see the position of the strained 
Dirac point and FBZ, relative to the unstrained FBZ. The inset shows a further zoomed-
in view, where we see that the Dirac point does not lie at the corner of the strained FBZ. 

It follows from Eq. S20 that the vector potentials have the form [S8, S11], 
 

𝑨𝑨𝑖𝑖 = −𝜺𝜺� ⋅ 𝑲𝑲𝑖𝑖 + 𝑨𝑨hop,             𝑨𝑨hop =
𝛽𝛽

2𝑎𝑎
�
𝜀𝜀𝑥𝑥𝑥𝑥 − 𝜀𝜀𝑦𝑦𝑦𝑦
−2𝜀𝜀𝑥𝑥𝑦𝑦 �. 

 

(S22) 

To generalize this formula for any 𝜃𝜃, we rotate 𝜺𝜺� in the lattice frame [S12]: 

𝜺𝜺�′ = ℛ−1( 𝜃𝜃) ⋅ 𝜺𝜺� ⋅ ℛ( 𝜃𝜃) = 𝜀𝜀 � cos2 𝜃𝜃 − 𝜈𝜈 sin2 𝜃𝜃 −(1 + 𝜈𝜈) cos 𝜃𝜃 sin𝜃𝜃
−(1 + 𝜈𝜈) cos 𝜃𝜃 sin𝜃𝜃 −𝜈𝜈 cos2 𝜃𝜃 + sin2 𝜃𝜃

�. 
 

(S23) 

The vector potentials in the lattice frame are then,  

𝑨𝑨1′ =
4𝜋𝜋

3√3𝑎𝑎
𝜀𝜀 �−cos2 𝜃𝜃 + 𝜈𝜈 sin2 𝜃𝜃

(1 + 𝜈𝜈) cos 𝜃𝜃 sin 𝜃𝜃� +  𝑨𝑨hop
′  (S24a) 
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𝑨𝑨2′ =
2𝜋𝜋
3𝑎𝑎

𝜀𝜀

⎝

⎜
⎛

1
√3

(cos2 𝜃𝜃 − 𝜈𝜈 sin2 𝜃𝜃) + (1 + 𝜈𝜈) cos 𝜃𝜃 sin𝜃𝜃

−(−𝜈𝜈 cos2 𝜃𝜃 + sin2 𝜃𝜃) −
1
√3

(1 + 𝜈𝜈) cos 𝜃𝜃 sin𝜃𝜃
⎠

⎟
⎞

+  𝑨𝑨hop
′ , 

 

(S24b) 

𝑨𝑨3′ =
2𝜋𝜋
3𝑎𝑎

𝜀𝜀

⎝

⎜
⎛

1
√3

(cos2 𝜃𝜃 − 𝜈𝜈 sin2 𝜃𝜃) − (1 + 𝜈𝜈) cos 𝜃𝜃 sin𝜃𝜃

(−𝜈𝜈 cos2 𝜃𝜃 + sin2 𝜃𝜃) −
1
√3

(1 + 𝜈𝜈) cos 𝜃𝜃 sin 𝜃𝜃
⎠

⎟
⎞

+  𝑨𝑨hop
′ , 

(S24c) 

𝑨𝑨hop
′ =

𝛽𝛽
2𝑎𝑎

𝜀𝜀(1 + 𝜈𝜈) �cos 2𝜃𝜃
sin 2𝜃𝜃�. (S24d) 

In the lattice frame, the Hamiltonian is: 

(𝐻𝐻𝑲𝑲𝑖𝑖)′ = ℏ𝑣𝑣𝐹𝐹(𝑰𝑰�+ (1 − 𝛽𝛽)𝜺𝜺�′) ⋅ 𝝈𝝈 ⋅ �𝒌𝒌�′ − 𝑨𝑨𝑖𝑖′� + ∆𝜇𝜇G + ∆𝜇𝜇ε, (S25) 
 

Since we are interested in calculating 𝑨𝑨𝑖𝑖 in the lab frame, we rotate (𝐻𝐻𝑲𝑲𝑖𝑖)′ back into the 
lab frame using the unitary matrix for rotating a spinor [S10]: 

𝑈𝑈†(𝜃𝜃) = �1 0
0 𝑒𝑒𝑖𝑖𝑖𝑖�. 

 

(S26) 

Then 𝐻𝐻 = 𝑈𝑈†(−𝜃𝜃)𝐻𝐻′𝑈𝑈(−𝜃𝜃). This gives the vector potentials in the lab frame reported in 
Eq. 2 of the main text: 

𝑨𝑨1 =
4𝜋𝜋𝜀𝜀

3√3𝑎𝑎
�−cos 𝜃𝜃
νsin𝜃𝜃 � +  𝑨𝑨hop, 

𝑨𝑨2 =  
2𝜋𝜋𝜀𝜀
3𝑎𝑎

⎝

⎜
⎛

1
√3

cos 𝜃𝜃 + sin𝜃𝜃

−
1
√3

𝜈𝜈 sin𝜃𝜃 + 𝜈𝜈 cos 𝜃𝜃
⎠

⎟
⎞

+  𝑨𝑨hop, 

𝑨𝑨3 =
2𝜋𝜋𝜀𝜀
3𝑎𝑎

⎝

⎜
⎛

1
√3

cos 𝜃𝜃 − sin 𝜃𝜃

−
1
√3

𝜈𝜈 sin𝜃𝜃 − 𝜈𝜈 cos 𝜃𝜃
⎠

⎟
⎞

+  𝑨𝑨hop,, 

𝑨𝑨hop =
𝛽𝛽𝜀𝜀(1 + 𝜈𝜈)

2𝑎𝑎
�cos 3𝜃𝜃

sin 3𝜃𝜃�. 

(S27a) 

 

(S27b) 
 
 
 
 

(S27c) 
 
 

(S27d) 
 

The 𝑥𝑥 and 𝑦𝑦 components of the vector potentials are plotted as a function 𝜃𝜃 in Fig. S4(c) 
and S4(d) respectively. In the top plots, we show the total vector potentials from Eq. S27, 
while in the bottom plots we show the hopping and lattice contributions.  
 
2.4 Transmission across uniaxial-strain barriers in graphene  
 

To derive the transmission equation in uniaxially strained graphene devices, we use the 
Hamiltonian operator in Eq. S21. We solve for the wave functions of carriers in strained 
graphene using the Hamiltonian: 
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 𝐻𝐻𝑲𝑲𝑖𝑖  𝚿𝚿𝑖𝑖,𝑛𝑛,𝑘𝑘𝑥𝑥 =

⎝

⎜
⎛

∆𝜇𝜇G + ∆𝜇𝜇ε
ℏ𝑣𝑣𝐹𝐹,𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥 − 𝐴𝐴𝑖𝑖,𝑥𝑥�
    − 𝑖𝑖ℏ𝑣𝑣𝐹𝐹,𝑦𝑦𝑦𝑦(𝑞𝑞𝑛𝑛 − 𝐴𝐴𝑖𝑖,𝑦𝑦)

ℏ𝑣𝑣𝐹𝐹,𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥 − 𝐴𝐴𝑖𝑖,𝑥𝑥�
    + 𝑖𝑖ℏ𝑣𝑣𝐹𝐹,𝑦𝑦𝑦𝑦(𝑞𝑞𝑛𝑛 − 𝐴𝐴𝑖𝑖,𝑦𝑦)

∆𝜇𝜇G + ∆𝜇𝜇ε
⎠

⎟
⎞
𝚿𝚿𝑖𝑖,𝑛𝑛,𝑘𝑘𝑥𝑥. (S28) 

We diagonalize the Hamiltonian to determine the wave functions [S6]:  

 𝚿𝚿𝑖𝑖,𝑛𝑛,𝑘𝑘𝑥𝑥 = 𝑒𝑒𝑖𝑖𝑘𝑘𝑥𝑥𝑥𝑥χ𝑖𝑖,𝑛𝑛,𝑘𝑘𝑥𝑥     (S29) 

with  
 

χ𝑖𝑖,𝑛𝑛,𝑘𝑘𝑥𝑥 =  𝑎𝑎𝑖𝑖,𝑛𝑛𝑒𝑒𝑖𝑖𝑞𝑞𝑛𝑛𝑦𝑦 �
1

𝑧𝑧𝑖𝑖,𝑛𝑛,𝑘𝑘𝑥𝑥
� + 𝑏𝑏𝑖𝑖,𝑛𝑛𝑒𝑒−𝑖𝑖𝑞𝑞𝑛𝑛𝑦𝑦 �

𝑧𝑧𝑖𝑖,𝑛𝑛,𝑘𝑘𝑥𝑥
1 �, (S30) 

and  
 
 𝑧𝑧𝑖𝑖,𝑛𝑛,𝑘𝑘𝑥𝑥 = ±

𝑣𝑣𝐹𝐹,𝑥𝑥𝑥𝑥(𝑘𝑘𝑥𝑥 − 𝐴𝐴𝑖𝑖,𝑥𝑥) + 𝑖𝑖𝑣𝑣𝐹𝐹,𝑦𝑦𝑦𝑦(𝑞𝑞𝑛𝑛 − 𝐴𝐴𝑖𝑖,𝑦𝑦)

�𝑣𝑣𝐹𝐹,𝑥𝑥𝑥𝑥
2 (𝑘𝑘𝑥𝑥 − 𝐴𝐴𝑖𝑖,𝑥𝑥)2 + 𝑣𝑣𝐹𝐹,𝑦𝑦𝑦𝑦

2 (𝑞𝑞𝑛𝑛 − 𝐴𝐴𝑖𝑖,𝑦𝑦)2
 . (S31) 

where the ± refers to the conduction and valence bands respectively. We then make use 
of the 𝑥𝑥-boundary conditions illustrated in Fig. S5. 

 
Figure S5. Boundary condition along 𝑥𝑥 in a suspended graphene device. Regions I and III are the graphene 
contacts covered by gold, and region II is the naked and strained channel. 

We label the charge carrier momenta in the contacts and channel, respectively 𝒌𝒌 =
𝑘𝑘𝑥𝑥𝑥𝑥� + 𝑞𝑞𝑛𝑛𝑦𝑦� and 𝒌𝒌� = 𝑘𝑘�𝑥𝑥𝑥𝑥� + 𝑞𝑞�𝑛𝑛𝑦𝑦�. Then, the wave function in the three regions shown in 
Fig. S5 is: 

 𝚿𝚿I = χ𝑖𝑖,𝑛𝑛,𝑘𝑘𝑥𝑥𝑒𝑒
𝑖𝑖𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑟𝑟𝑖𝑖,𝑛𝑛,χ𝑖𝑖,𝑛𝑛,−𝑘𝑘𝑥𝑥𝑒𝑒

−𝑖𝑖𝑘𝑘𝑥𝑥𝑥𝑥, 
𝚿𝚿II = α𝑖𝑖,𝑛𝑛χ𝑖𝑖,𝑛𝑛,𝑘𝑘�𝑥𝑥𝑒𝑒

𝑖𝑖𝑘𝑘�𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑖𝑖,𝑛𝑛χ𝑖𝑖,𝑛𝑛,−𝑘𝑘�𝑥𝑥𝑒𝑒
−𝑖𝑖𝑘𝑘�𝑥𝑥𝑥𝑥, 

𝚿𝚿III = 𝑡𝑡𝑖𝑖,𝑛𝑛χ𝑖𝑖,𝑛𝑛𝑘𝑘𝑥𝑥𝑒𝑒
𝑖𝑖𝑘𝑘𝑥𝑥(𝑥𝑥−𝐿𝐿). 

(S32a) 
(S32b) 
(S32c) 

Setting ΨI = ΨII and ΨII = ΨIII at the boundaries 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿 give the system of 
equations: 

 
�

1
𝑧𝑧𝑖𝑖,𝑛𝑛,𝑘𝑘𝑥𝑥

� + 𝑟𝑟𝑖𝑖,𝑛𝑛 �
1

𝑧𝑧𝑖𝑖,𝑛𝑛,−𝑘𝑘𝑥𝑥
� = 𝛼𝛼𝑖𝑖,𝑛𝑛 �

1
𝑧𝑧𝑖𝑖,𝑛𝑛,𝑘𝑘�𝑥𝑥

� + 𝛽𝛽𝑖𝑖,𝑛𝑛 �
1

𝑧𝑧𝑖𝑖,𝑛𝑛,−𝑘𝑘�𝑥𝑥
�, 

𝑡𝑡𝑖𝑖,𝑛𝑛 �
1

𝑧𝑧𝑖𝑖,𝑛𝑛,𝑘𝑘𝑥𝑥
� = 𝛼𝛼𝑖𝑖,𝑛𝑛 �

1
𝑧𝑧𝑖𝑖,𝑛𝑛,𝑘𝑘�𝑥𝑥

� 𝑒𝑒𝑖𝑖𝑘𝑘�𝑥𝑥𝐿𝐿 + 𝛽𝛽𝑖𝑖,𝑛𝑛 �
1

𝑧𝑧𝑖𝑖,𝑛𝑛,−𝑘𝑘�𝑥𝑥
� 𝑒𝑒−𝑖𝑖𝑘𝑘�𝑥𝑥𝐿𝐿 , 

(S33a) 

(S33b) 
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which we solve for the transmission, 𝑇𝑇𝜉𝜉,𝑖𝑖,𝑛𝑛 = �𝑡𝑡𝜉𝜉,𝑖𝑖,𝑛𝑛�
2. We find: 

 

 𝑇𝑇𝜉𝜉,𝑖𝑖,𝑛𝑛 =
�
𝑣𝑣𝐹𝐹,𝑥𝑥𝑥𝑥
𝑣𝑣𝐹𝐹

𝑘𝑘𝑥𝑥𝑘𝑘�𝑥𝑥�
2

 

�
𝑣𝑣𝐹𝐹,𝑥𝑥𝑥𝑥
𝑣𝑣𝐹𝐹

𝑘𝑘𝑥𝑥𝑘𝑘�𝑥𝑥�
2

cos2�𝑘𝑘�𝑥𝑥𝐿𝐿� + �𝑘𝑘𝐹𝐹𝑘𝑘�𝐹𝐹 −
𝑣𝑣𝐹𝐹,𝑦𝑦𝑦𝑦
𝑣𝑣𝐹𝐹

𝑞𝑞𝑛𝑛�𝑞𝑞𝑛𝑛 − 𝜉𝜉𝐴𝐴𝑖𝑖,𝑦𝑦��
2

sin2�𝑘𝑘�𝑥𝑥𝐿𝐿�
 , (S34) 

where 𝜉𝜉 = ±1 refers to the 𝐾𝐾 and 𝐾𝐾’ valleys respectively, 𝑞𝑞𝑛𝑛 = 𝜋𝜋/𝐿𝐿 (𝑛𝑛 + 1 2⁄ ) is the 
quantized transversal momentum for mode 𝑛𝑛 using smooth edge boundary conditions 
[S6], and 𝑘𝑘𝑥𝑥  = (𝑘𝑘𝐹𝐹2 − 𝑞𝑞𝑛𝑛2)1/2, 𝑘𝑘�𝑥𝑥 = 𝑣𝑣𝐹𝐹,𝑥𝑥𝑥𝑥

−1 [𝑣𝑣𝐹𝐹2𝑘𝑘�𝐹𝐹2 − 𝑣𝑣𝐹𝐹,𝑦𝑦𝑦𝑦
2 �𝑞𝑞𝑛𝑛 − 𝐴𝐴𝑖𝑖,𝑦𝑦�

2
]
1
2. The number of 

available modes is set by the contact potential, 

𝑁𝑁 = Int �
𝐿𝐿
𝜋𝜋
∗ 𝑘𝑘𝐹𝐹 −

1
2
�. (S35) 

Summing over these modes gives the ballistic conductivity: 

𝜎𝜎 =
𝐿𝐿
𝐿𝐿

2𝑒𝑒2

ℎ
1
3
���𝑇𝑇𝜉𝜉,𝑖𝑖,𝑛𝑛.

𝑁𝑁

𝑛𝑛

3

𝑖𝑖𝜉𝜉

  (S36) 

 
S3. Hierarchy of the sources of uncertainty in GQST calculations 

 
 

We present the hierarchy of sources of uncertainty in the model. We begin by discussing 
the main additions we made to previous idealized model, parameters: 𝜀𝜀thermal, 𝜃𝜃, ∆𝜇𝜇contact, 
and 𝑨𝑨lat,𝑖𝑖 = −𝜺𝜺� ⋅ 𝑲𝑲𝑖𝑖. They all have a major (order of magnitude) impact on the calculated 
conductivity. We included all of them in our study, and, to the best of our knowledge, it is 
the first time they have all been considered simultaneously.  
 
Next, we present how the calculated conductivities are affected by excluding the following 
parameters: thermal strain in the contacts, gating in the contacts, and higher order strain 
effects. We also calculate the effect of reasonable uncertainties in 𝑣𝑣𝐹𝐹, 𝛽𝛽, and 𝑔𝑔𝜀𝜀. All of 
these have a modest (10s of %) impact on the conductivity output. They were not included 
in the calculations to preserve the flexibility and ease of use of the model. We remark that 
these modest uncertainties will not misguide the experimental realization of the proposal, 
as they can be compensated for by adjusting the experimental parameters (𝜃𝜃, 
∆𝜇𝜇contact,𝑉𝑉G, 𝜀𝜀total) within the studied range (see Fig. 4 of the main text).  
 
Finally, we list the parameters whose uncertainties have minor (few %) effects on the 
conductivity. They include possible errors in the microfabricated dimensions 𝐿𝐿, 𝐿𝐿, and 𝑢𝑢, 
the presence of a realistic series resistance, 𝑅𝑅S, between gold and graphene, a residual 
impurity density, 𝑛𝑛imp, in the graphene channel, and uncertainties in the value of the 
Poisson ratio, 𝜈𝜈, and anisotropy of the Fermi velocity. For the calculations below, unless 
specified otherwise, we use the same parameter-set as in the main text: 𝛽𝛽 = 2.5, 𝑔𝑔𝜀𝜀 = 3.0 
eV, 𝑣𝑣𝐹𝐹 = (3 2⁄ )𝑎𝑎𝛾𝛾0/ℏ = 8.8 × 105 m/s, 𝜈𝜈 = 0.165, 𝐿𝐿 = 100 nm, 𝐿𝐿 = 1000 nm, 𝑢𝑢 = 900 
nm, ∆𝜇𝜇contact = −0.12 eV, 𝜃𝜃 = 30°, 𝑡𝑡vac = 50 nm, 𝜀𝜀thermal = 2.6 %, and 𝜀𝜀mech = 2.5 %.  
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3.1 Major necessary corrections included in the transmission model  
 

In Fig. S6 we show the effect of four parameters (𝜀𝜀thermal, 𝜃𝜃, ∆𝜇𝜇contact, and 𝑨𝑨lat,𝑖𝑖 = −𝜺𝜺� ⋅ 𝑲𝑲𝑖𝑖) 
which we have incorporated into our calculations to improve on previously idealized 
theoretical models. As can be seen in each panel, the exclusion of any of these 
parameters would cause major quantitative changes to the conductivity data, and 
misguide experiments. We therefore included realistic values for these terms in all of our 
calculations, as discussed in the main text. 
 

 
Figure S6. Corrections to transmission model with major impacts on 𝜎𝜎 − 𝑉𝑉G, when under a uniaxial strain 
of 𝜀𝜀thermal + 𝜀𝜀mech = 2.6 % + 2.5 %. (a) Effect thermal strain, with 𝜀𝜀thermal = 2.6 % (black), 𝜀𝜀thermal = 0 % (red), 
and 𝜀𝜀thermal = 2.8 % (blue). (b) Effect of the crystal orientation, with 𝜃𝜃 = 0° (black), 𝜃𝜃 = 15° (red), and 𝜃𝜃 = 0° 
(blue). (c) Effect of contact doping, with ∆𝜇𝜇contact = −0.12 (black), ∆𝜇𝜇contact = ∞ (red), ∆𝜇𝜇contact = −0.1 (blue). 
(d) Effect of including (black) or excluding (red) the lattice vector potential 𝑨𝑨𝑖𝑖,lat from our calculations. 

3.2 Modest uncertainties and corrections not included in our model – which can be 
compensated for by tuning experimental parameters 
 
Figure S7, below, shows the impact of several other parameters on our 𝜎𝜎 − 𝑉𝑉𝐺𝐺 
calculations. All of them have a modest (10s of %) effect on the calculated 𝜎𝜎, and a much 
smaller effect on the 𝜎𝜎on/off ratio. We note that these corrections often have opposing 
signs, and would partially cancel each other. Moreover, the scale of the corrections can 
be compensated for with the experimentally controlled parameters, 𝜃𝜃, ∆𝜇𝜇contact,𝑉𝑉G, and 
𝜀𝜀total over the range presented in Fig. 4(c)-(d) of the main text. Therefore, in order to keep 
our applied theoretical model lightweight, intuitive and flexible, we did not include these 
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uncertainties or corrections. This will not undermine the ability of our model to properly 
guide the development of experiments.  

  
Figure S7. Parameter uncertainties with modest effects on 𝜎𝜎 − 𝑉𝑉G, when under a uniaxial strain of 𝜀𝜀thermal + 
𝜀𝜀mech = 2.6 % + 2.5 %. (a) Effect of excluding (black), or including (red) a strain in the contacts from gold 
contraction, 𝜀𝜀contact = −0.31 %. (b) Effect of excluding (black) or including (red) electrostatic gating of the 
Fermi energy in the contacts. (c) Effect of excluding (black) of including (red) higher order strain in the 
Hamiltonian. (d) Effect of uncertainty in the Fermi velocity, comparing 𝑣𝑣𝐹𝐹 = 8.8 × 105 m/s (black) and 𝑣𝑣𝐹𝐹 =
1 × 106 m/s (red). (e) Effect of varying the scalar potential prefactor, 𝑔𝑔𝜀𝜀 = 3.0 eV (black), 3.3 eV (red), 
and 2.7 eV (blue). (f) Effect of varying the electron Gruneisen parameter, 𝛽𝛽 = 2.5 (black), 2.75 (red), and 
2.25 (blue). 

In Fig. S7(a), we show the effect of including strain in the graphene contacts. We expect 
any strain in the graphene contacts to arise from the contraction of the gold deposited on 
them. It should lead to a maximum, and isotropic, compressive strain of 𝜀𝜀contact ≈ −0.31 % 
at 𝑇𝑇~1 K [S2]. The total effective vector potential governing the device would then be the 
difference in the positions of the Dirac points between the isotropically strained contacts 
and the uniaxially strained channel 𝑨𝑨𝑖𝑖  → 𝑲𝑲𝐷𝐷,𝑖𝑖 − 𝑲𝑲𝐷𝐷,𝑖𝑖,contact = (𝜺𝜺�contact − 𝜺𝜺�) ⋅ 𝑲𝑲𝑖𝑖 + 𝑨𝑨hop, with 

𝜺𝜺�contact = �𝜀𝜀contact 0
0 𝜀𝜀contact 

�.  
 

(S37) 

There would be no hopping contribution from the vector potential in the isotropically 
strained contacts. In Fig. S7(b), we show the effect of including gating of the Fermi level 
in the graphene contacts. To calculate the Fermi energy in the back-gated graphene 
contacts, we follow Ref. [S13]:  
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∆𝜇𝜇c,G = sgn �𝛿𝛿𝑉𝑉G +
∆𝜇𝜇c𝐶𝐶c

𝑒𝑒𝐶𝐶G
� �−

𝐶𝐶c + 𝐶𝐶G

2
𝜁𝜁𝐹𝐹2 + ��

𝐶𝐶c + 𝐶𝐶G

2
𝜁𝜁𝐹𝐹2�

2

+ 𝜁𝜁𝐹𝐹2𝐶𝐶c �∆𝜇𝜇c +
𝐶𝐶G

𝐶𝐶c
𝑒𝑒𝛿𝛿𝑉𝑉G��, (S38) 

where we have replaced the subscript “contact" with "c" for brevity, 𝐶𝐶c ≈ 10−5 F/cm2 is the 
capacitance between the metal and graphene sheet [S13], 𝛿𝛿𝑉𝑉G = 𝑉𝑉G − 𝑉𝑉D, and 𝜁𝜁𝐹𝐹 =
√𝜋𝜋ℏ𝑣𝑣𝐹𝐹/𝑒𝑒 is the so-called Fermi electric flux. In Fig. S7(c), we show the effect of going 
beyond first order in strain when calculating the vector potentials. Using Eq. S16, we 
calculated the full-order strained graphene band structure, and numerically determined 
the positions of the Dirac points and vector potentials, 𝑨𝑨𝑖𝑖 = 𝑲𝑲𝐷𝐷,𝑖𝑖 − 𝑲𝑲𝑖𝑖. In Fig. S7(d)-(e)-
(f), we show the effect of a ~10 % uncertainty in the Fermi velocity, 𝑣𝑣𝐹𝐹, the scalar potential 
magnitude, 𝑔𝑔𝜀𝜀, and the electron Grüneisen parameter, 𝛽𝛽. 

3.3 Minor uncertainties and corrections not included in our model 
 
Lastly, in Figure S8 we verify that several other minor uncertainties have no substantive 
impact of the quantitative predictions of the model.  

 
Figure S8. Parameter uncertainties with minor effects on 𝜎𝜎 − 𝑉𝑉G, when under a uniaxial strain of 𝜀𝜀thermal + 
𝜀𝜀mech = 2.6 % + 2.5 %. (a) Effect of varying the undercut length 𝑢𝑢 = 900 (black), 800nm (red), and 𝑢𝑢 = 1000 
nm (blue). (b) Effect of varying length and width of the graphene channel: 𝐿𝐿 = 1000 nm, 𝐿𝐿 = 100 nm 
(black), 𝐿𝐿 = 900 nm, 𝐿𝐿 = 100 nm (red), 𝐿𝐿 = 1000 nm, 𝐿𝐿 = 90 nm (blue), 𝐿𝐿 = 1100 nm, 𝐿𝐿 = 90 nm (gold). 
(c) Effect of excluding (black) or including (red) a series resistance 𝑅𝑅S = 400 Ω. (d) Effect of excluding 
(black) or including (red) a channel impurity density 𝑛𝑛imp = 5 × 1010 cm-2. (e) Effect of uncertainty in the 
Poisson ratio, 𝜈𝜈 = 0.165 (black), 𝜈𝜈 = 0.15 (red), 𝜈𝜈 = 0.2 (blue). (f) Effect of including (black) or excluding 
(red) the strain-induced anisotropic Fermi velocity. 
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In Fig. S8(c) we show the effect of adding a series resistance 𝑅𝑅S, arising from the gold-
graphene injection. We plot conductivity (𝜎𝜎 → 𝐿𝐿 𝐿𝐿⁄ (𝜎𝜎−1 𝐿𝐿 𝐿𝐿⁄ + 𝑅𝑅S)−1) adding a total 
series resistance of 𝑅𝑅S = 400 Ω, due to the gold-graphene interface [S14]. We see that 
this has little effect on the low-conductivity data, as expected. Calculating the effect of 𝑅𝑅S 
on the on/off ratio: 

 
𝜎𝜎on/off =

1
𝜎𝜎off 

𝐿𝐿
𝐿𝐿 + 𝑅𝑅S

1
𝜎𝜎on 

𝐿𝐿
𝐿𝐿 + 𝑅𝑅S

. (S39) 

With 𝑅𝑅S = 400 Ω, this corresponds to a reduction in 𝜎𝜎on/off of less than 20 %. 
 
In Fig. S8(d) we show the effect of including an impurity doping density of 𝑛𝑛imp = 5 × 1010 
cm-2 [S15]. We include the impurity density using Eq. S40 below [S16]: 

 

𝑛𝑛total = sgn(𝑉𝑉G − 𝑉𝑉D)��
(𝑉𝑉G − 𝑉𝑉D)𝐶𝐶G

𝑒𝑒
�
2

+  𝑛𝑛imp
2 , (S40) 

and ∆𝜇𝜇G = sgn(𝑛𝑛total)�𝜋𝜋|𝑛𝑛total|. Due to the large scalar potential shift of the Dirac point, 
the impurity density has a negligible effect on the conductivity. In Fig. S8(e), we show the 
effect of varying the value of the Poisson ratio, 𝜈𝜈 = 0.15  and 𝜈𝜈 = 0.2. These curves show 
that small variances in the Poisson ratio have little effect on the conductivity data. In Fig. 
S8(f), we show the effect of excluding the Fermi velocity anisotropy, taking 𝑣𝑣𝐹𝐹,𝑥𝑥𝑥𝑥 = 𝑣𝑣𝐹𝐹,𝑦𝑦𝑦𝑦 =
𝑣𝑣𝐹𝐹 in Eq. S34. Excluding the warping of the Dirac cone does not significantly affect 
transport. We however did keep this last term in all calculations because it adds subtle 
qualitative changes in the FP resonances. Removing this correction would have no impact 
on our conclusions. 
 
S4. Fano factor signatures of the GQST effect 
 
The Fano factor is a measure of the shot noise in a system. It has a specific value for 
different transport regimes and can be used to study nonclassical dynamics. Here we 
remark that the Fano factor is also strain tunable. The Fano factor is readily calculated 
from the transmission [S6]: 

 
𝐹𝐹 =

∑ ∑ ∑ 𝑇𝑇𝜉𝜉,𝑖𝑖,𝑛𝑛
𝑁𝑁
𝑛𝑛=0 (1 − 𝑇𝑇𝜉𝜉,𝑖𝑖,𝑛𝑛)3

𝑖𝑖  𝜉𝜉 

∑ ∑ ∑ 𝑇𝑇𝜉𝜉,𝑖𝑖,𝑛𝑛
𝑁𝑁
𝑛𝑛=0 

3
𝑖𝑖  𝜉𝜉 

 . (S41) 

In Fig. S9(a), we show the conductivity as a function of gate and strain for device 
parameters 𝐿𝐿/𝐿𝐿 =  100/1000 , 𝜃𝜃 = 15° ∆𝜇𝜇contact = −0.12 eV, and various strains. The 
Fano factor from the same dataset is shown in Fig. S9(b). It is well known that in the 
ballistic limit, the shot noise in graphene is sub-Poissonian, with the Fano factor reaching 
1/3 at the Dirac point [S6]. However, as strain causes the conductivity to drop, the shot 
noise becomes Poissonian and the Fano factor approaches unity. Noise measurements 
could therefore be used as an additional way to confirm the GQST effect.  
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Figure S9. Fano factor signatures of the GQST effect. (a) 𝜎𝜎 − (𝑉𝑉G − 𝑉𝑉𝐷𝐷) data for 𝜀𝜀total = 0 , 2.6, and 5.1 % 
using device parameters  𝐿𝐿/𝐿𝐿 =  100/1000 , 𝜃𝜃 = 15°, ∆𝜇𝜇contact = −0.12 eV. (b) Fano factor, F, vs. (𝑉𝑉G − 𝑉𝑉𝐷𝐷) 
at various uniaxial strains.  

Supplementary References 
 
[S1] V. Singh, S. Sengupta, H.S. Solanki, R. Dhall, A. Allain, S. Dhara, P. Pant, and M. 

M. Deshmukh, Probing thermal expansion of graphene and modal dispersion at 
low-temperature using graphene nanoelectromechanical systems resonators, 
Nanotechnol. 21, 165204 (2010). 

 
[S2] F. C. Nix and D. MacNair, The thermal expansion of pure metals: copper, gold, 

aluminum, nickel, and iron, Phys. Rev. 60, 597 (1941). 
 
[S3] D. Yoon, Y. W. Son, and H. Cheong, Negative thermal expansion coefficient of 

graphene measured by Raman spectroscopy, Nano Lett. 11, 3227 (2011). 
 
[S4] J. O. Island, V. Tayari, A. C. McRae, and A. R. Champagne, Few-hundred GHz 

carbon nanotube nanoelectromechanical systems (NEMS), Nano Lett. 12, 4564 
(2012). 

 
[S5] M. M. Fogler, F. Guinea, and M. I. Katsnelson, Pseudomagnetic fields and ballistic 

transport in a suspended graphene sheet, Phys. Rev. Lett. 101, 226804 (2008). 
 
[S6] J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. Beenakker, Sub- 
 Poissonian shot noise in graphene, Phys. Rev. Lett. 96, 246802 (2006). 
  
[S7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, 

The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009).  
 
[S8] G. G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, and H. Terrones, Electronic and 

optical properties of strained graphene and other strained 2D materials: a review, 
Rep. Prog. Phys. 80, 096501 (2017). 

 



16 
 

[S9] S. M. Choi, S. H. Jhi, and Y. W. Son, Effects of strain on electronic properties of 
graphene, Phys. Rev. B 81, 081407 (2010). 

 
[S10] F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Transport properties of 

graphene across strain-induced nonuniform velocity profiles, Phys. Rev. B 84, 
195404 (2011).  

 
[S11] A. L. Kitt, V. M. Pereira, A. K. Swan, and B. B. Goldberg, Lattice-corrected strain- 

induced vector potentials in graphene, Phys. Rev. B 85, 115432 (2012). 
 

[S12] V. M. Pereira, A. H. Castro Neto, and N. M. R. Peres, Tight-binding approach to 
uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).  

 
[S13]  A. Laitinen, G. S. Paraoanu, M. Oksanen, M. F. Craciun, S. Russo, E. Sonin, and 

P. Hakonen, Contact doping, Klein tunneling, and asymmetry of shot noise in 
suspended graphene, Phys. Rev. B 93, 115413 (2016).  

 
[S14]   L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. 

Centeno, A. Zurutuza, A. Benham, E. A. Carrion, E. Pop, and R. Sordan, Ultra-low 
contact resistance in graphene devices at the Dirac point, 2D Mater. 5, 025014 
(2018). 

  
[S15]  S. Yiğen, and A. R. Champagne, Wiedemann–Franz relation and thermal-

transistor effect in suspended graphene, Nano Lett. 14, 289 (2014). 
  
[S16]  V. E. Dorgan, M. H. Bae, and E. Pop, Mobility and saturation velocity in graphene 

on SiO2, Appl. Phys. Lett. 97, 082112 (2010). 
  
 
 


