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1. Sample Annealing 
 
We annealed the samples using Joule heating in situ by flowing a large current in the 
devices (up to 540 and 837 μA for Samples A and B). Fig. S1 shows the 2-point dc 
transport data in Sample A before (red) and after (black) current annealing.  Annealing 
and all subsequent measurements were done under high vacuum ≤10-6 Torr. 
 

 
Figure S1: Sample annealing data. G = I / VB vs VG  data for Sample A before (red) and after 
(black) current annealing, T ≈ 20 K.  
 
2. Series Resistance: Upper Bound for Contact Resistance 
 
An upper bound for the contact resistance, RC, of our devices can be extracted from the 
two-point R-nG curves. The data for Sample A is shown in Fig. S2.  We fit the data with 
the expression [S1]   
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where R0 is the resistance due to neutral scatterers plus RC, ℓ is the length of the device, 
W the width, nG the charge density induced by VG, μ the mobility, and e the electron's 
charge. We fit the data at T = Te = 100 K, and for (VG - VD) > 1.3 V to avoid the thermal 
smearing around the Dirac point, VD. The fit for the hole (electron) regime is shown as a 
light blue (red) dashed line in Fig. S2(a). The extracted mobility for Sample A in the 
doped regime is μ ≈ 5.5 x 104 cm2 / V.s at 100 K, and R0 ≈ 477 ± 53 and 944 ± 80 Ω for 
hole and electron doping respectively. Panel (b) shows the conductance, G = 1/R, for 
Sample A before the series resistance R0 is subtracted (black line) and after R0 is 
subtracted for the hole (blue) and electron (red) doped data. The corrected conductance 
depends linearly on the gate induced charge density, nG. 
 

 
Figure S2: Extracting the series resistance in Sample A. (a) R-nG data at 100 K for Sample A. 
The blue and red dashed lines are fits as described above from which the total series resistance, 
R0, is extracted. (b) The same G-nG data as in panel (a), before (black line) and after subtracting 
R0  for holes (blue data) and electrons (red data).   
 
3. Mean-free path of charge carriers  
 
To extract an approximate elastic mean free path, 𝑙, for charge carriers, we consider 

doping due to impurities, 𝑛∗, and thermally activated carriers, 𝑛𝑡ℎ = �𝜋
6
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is Boltzmann’s constant, 𝑇 the lattice temperature, 𝑣𝐹 = 106 m/s  the Fermi velocity. The 
total charge carrier density is [S2]  
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where 𝑛𝐺 is the charge density induced by the gate electrode. For instance, for Sample 
A at 𝑇 = 100 K and VG = -5.3 V (nG = -1.8 x 1011 cm-2) we find 𝑛𝑡𝑜𝑡(100 K) ≈ nG and for 
Sample B at 𝑇 = 100 K and VG = 5.0 V (nG = 1.1 x 1011 cm-2) we find 𝑛𝑡𝑜𝑡(100 K) ≈ 1.15 
x 1011 cm-2. We calculate a realistic estimate of the charge carrier mobility by using 
𝜇 =  𝜎

𝑛𝑡𝑜𝑡𝑒
  , where 𝜎 is the charge conductivity. At 𝑇 = 100 K, 𝜇 = 3.6 and 2.9 x 104 

cm2/V.s using 𝑅𝑐 =  𝑅0/2 for Samples A (VG = -5.3 V) and B (VG = 5.0 V) respectively. 
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The extracted mobility decreases with 𝑇. From the mobility, we extract the mean-free 
path of the carriers as,  

𝑙 =  �𝑛𝑡𝑜𝑡
𝜋
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At 𝑇 = 100 K, we find 𝑙  = 177 and 114 nm for A (VG = -5.3 V) and B (VG = 5.0 V), which 
is several times shorter than the length and width of the samples (650 nm x 675 nm for 
A, and 400 nm x 970 nm for B).   
 
4.  Joule self-heating data for Sample B  
 

 
Figure S3: Electron heating in Sample B. (a) R vs VB at T = 100 K for device B at VG = 5 V 
(circle data, ntot,Τ=0 ≈ 1.1 x 1011 cm-2) and  VG = 2 V (square data, ntot,Τ=0 ≈ 0.5 x 1011 cm-2). Joule 
heating due to VB raises the flake's average Te above the cryostat T.  (b) Te vs VB in Sample B 
at T = 100 K extracted from (a) using the thermometry curves as in Fig. 2(a). All of our Ke data is 
extracted with VB ≲ 27 mV. The solid lines in panel (b) are power law fit 𝑇𝑒 = 100 + 𝐵𝑉𝐵𝑥 , and 
we find x =2.10 ± 0.03 and 1.99 ± 0.02, which is very close the expected x = 2 for Joule heating 
over a small Te range. 
 
5. Error analysis 
 
To calculate the uncertainties on the values extracted for Ke, using Eq. S3 below, we 
account for four sources of uncertainty: error on the sample’s length, Δℓ, width ΔW, 
resistance ΔR due to the contact resistance uncertainty ΔRC, and extracted electronic 
temperature ΔTe. We estimate Δℓ = one mean free-path (extracted using Eq. S2) which 
ranges from 205 nm at 80 K (VG = -5.3 V) to 158 nm at 150 K (VG = -2.3 V) for Sample A 
and from 135 nm at 80 K (VG = +5.0 V) to 87 nm at 150 K (VG = -2.0 V) for sample B. 
ΔW ≈  50 nm, ΔR =ΔRC = R0/2 = 239 and 406 Ω for Samples A and B, and ΔTe = the 
standard deviation of Te from the fit of Te vs VB as shown in Figs. 2(d) and S3(b).  
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The error on the measured current 𝐼 is negligible compared to the other sources of error, 
and the thickness h = 0.335 nm is a standard value used by all experiments and theory. 
Note that ΔT = Te –T where T is the cryostat temperature. The error on T is about 0.1 K 



4 
 

and comes from the accuracy of our temperature controller, thus the error on ΔT is 
roughly ΔTe + 0.1 K. We calculate ΔKe using Eq. S4, 
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The calculated errors are shown in Figs. 3 and 4. For example, the error bars ∆𝐾𝑒/𝐾𝑒 at 
T = 100 K are approximately 20% for Samples A and 40% for Sample B.  
 
 
6. Contact resistance effect on extracted Lorenz numbers 
 
The uncertainty on the contact resistance does not significantly affect the accuracy of 
the agreement of the data in Fig. 3 of the main text with the Wiedemann-Franz relation. 
We used RC = R0/2 = 239 and 406 Ω for Samples A and B respectively in Fig. 3. Figures 
S4 (below) and 3 (main text) show that the quality of the fit of the data to the WF law is 
not affected by the systematic uncertainty on RC. The only effect of the RC uncertainty is 
a quantitative change in the extracted Lorenz number L. Fig. S4(a) shows the WF law fit 
to the data if we let RC = Rmin = 120 Ω (calculated using the lowest reported gold-
graphene resistance [S3] at similar densities), and Fig. S4(b) shows the WF law fit to 
the data if we let RC = Rmax = 477 Ω (extracted in SI section 2). 
 

 
Figure S4: Effect of the contact resistance uncertainty on data in Fig. 3(a). The electronic 
thermal conductivity, Ke, of Sample A in the hole-doped regime vs Te for ΔT = Te - T = 10 K. The 
circle, square and triangle data show Ke at VG = -5.3, -3.3 and -2.3 V respectively corresponding 
to ntot, T=0  ≈ -1.8, -1.1, -0.8 x 1011 cm-2. (a) Using RC = Rmin = 120 Ω. The solid lines are given by 
the WF relation KWF = LσTe with L = 0.53, 0.64 and 0.68 x Lo respectively. (b) Using RC = Rmax = 
477 Ω. The solid lines are given by the WF relation with L = 0.33 x Lo for all three curves. 
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