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1.   Dimensions and R-VG data for Sample C  
 

 
 
Figure S1: Sample C. (a) Optical image of three e-beam lithographically defined contacts 
(purple) on a graphene flake (dark purple). The two left electrodes connect Sample C, and the 
two right ones Sample A. (b) SEM of Sample C after the measurements were completed. The 
gold contacts are smooth and show the length of Device C (400 nm). The width of Device C can 
be inferred from the contrast of graphene under the gold (970 nm). The suspended section of 
Device C is not visible as it was damaged after the measurements were completed. (c) The R-
VG data for Sample C at several T, after current annealing, showing a low-charge impurity 
disorder n* = 2.2 x 1010 cm-2. 
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2. Upper bound for contact resistance 
 
An upper bound for the contact resistance, RC, of our devices can be extracted from the 
two-point R-nG curves. The data for Sample A is shown in Fig. S2.  We fit the data with 
the expression [S1]  𝑅 = 𝑅0 + � 𝐿

𝑊
� 1
𝑛𝐺𝜇

 where R0 is the resistance due to neutral 
scatterers plus RC, L is the length of the device, W the width, nG the charge density 
induced by VG, μ the mobility, and e the electron's charge. We fit the data at T = Te = 
100 K, and for (VG - VD) > 1.3 V to avoid the thermal smearing around the Dirac point, 
VD. The fit for the hole (electron) regime is shown as a light blue (red) dashed line in Fig. 
S2(a). The extracted mobility for Sample A in the doped regime is μ ≈ 8.5 x 104 cm2 V.s 
at 100 K, and R0 ≈ 682 ± 53 and 1135 ± 80 Ω for hole and electron doping respectively. 
Panel (b) show the conductance, G = 1/R, for Sample A before the series resistance R0 
is subtracted (black line) and after R0 is subtracted for the hole (light blue) and electron 
(red) doped data. The corrected conductance depends linearly on the gate induced 
charge density, nG. 
 

 
Figure S2: Upper bound for contact resistance of Sample A. (a) R-nG data at 100 K for Sample 
A. The light blue and red dashed lines are fits as described in the text from which the total series 
resistance, R0, is extracted. (b) The same G-nG data as in panel (a), before (black line) and after 
(blue and red lines) subtracting R0.   
 
 
3. Mean-free path in the nearly intrinsic regime  
 
To extract an approximate elastic mean free path, 𝑙 , for charge carriers when the 
chemical potential is close to the Dirac point, we consider doping due to impurities, 𝑛∗, 

and thermally activated electron-hole pairs, 𝑛𝑡ℎ = �𝜋
6
� �𝑘𝐵𝑇

ℏ𝑣𝐹
�
2
, where 𝑘𝐵 is Boltzmann’s 

constant, 𝑇 the lattice temperature, 𝑣𝐹 = 106 m/s  the Fermi velocity. The total charge 
carrier density is [S2]  

𝑛𝑡𝑜𝑡 = 𝑛 + 𝑝 = �𝑛𝐺2 + 4 ��𝑛
∗

2
�
2

+ 𝑛𝑡ℎ2 �                                  (S1) 

 
where 𝑛𝐺 is the charge density induced by the gate electrode. For instance, at 𝑇 = 100 
K we find 𝑛𝑡𝑜𝑡(100 𝐾) = 2.4, 2.5 and 2.8 x 1010 cm-2 for Samples A, B and C. We 
calculate the charge carrier mobility 𝜇 =  𝜎

𝑛𝑡𝑜𝑡𝑒
  , where 𝜎 is the charge conductivity. At 𝑇 
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= 100 K, 𝜇 =  4.1 (4.8), 2.9 (3.6), and 2.0 (2.7) x 104 cm2/V.s using 𝑅𝑐 =  0 (𝑅𝑜−𝐷𝑖𝑟𝑎𝑐) for 
Samples A, B and C respectively. The mobility decreases with 𝑇 for all samples. From 
the mobility, we extract the mean-free path of the carriers as,  
 

𝑙 =  �𝑛𝑡𝑜𝑡
𝜋

 ℎ𝜇
2𝑒

                                                               (S2) 

 
At 𝑇 = 100 K, we find 𝑙  = 74 (87), 54 (67), 39 (52) nm for A, B and C, which is several 
times shorter than the size of the samples.   
 
 
4.  Additional Joule self-heating data for Samples B and C  
 

 
 

 
Figure S3: Electron heating for Sample B. (a) R vs VB at T = 50, 100, 150, 210 K at VG = 0.0 V ≈ 
VD. (b) Zoom-in on the 100 K data. Joule heating due to VB raises the flake's average Te above 
T. Te is extracted using Fig. 2(a). Panels (c) and (d) show Te vs VB in Sample B at several T,  
and at T = 100 K respectively. All of our Ke data is extracted with VB ≲ 30 mV. The solid line in 
panel (d) is a power law fit 𝑇𝑒 = 100 + 𝐵 ∗ 𝑉𝐵𝑥, and we find x = 2.02 ± 0.04, as expected for Joule 
heating over a small Te range. 
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Figure S4: Electron heating for Sample C. (a) R vs VB at T = 100, 150, 180 K for Device C at VG 
= 0.0 V ≈ VD. (b) Zoom-in on the 100 K data. Joule heating due to VB raises the flake's average 
Te above T. Te is extracted using Fig. 2(a). Panels (c) and (d) show Te vs VB in Sample B at a 
few T, and at T = 100 K respectively. All of our Ke data is extracted with VB ≲ 30 mV. The solid 
line in panel (d) is a power law fit 𝑇𝑒 = 100 + 𝐵 ∗ 𝑉𝐵𝑥 , and we find x =2.00 ± 0.02, as expected 
for Joule heating over a small Te range. 
 
 
5. Electron-electron scattering length  
 
The electron-electron (inelastic) mean-free path, lee, in graphene was calculated by Li 
and Das Sarma [S3] for various charge densities and temperatures, but for disorder–
free samples (ballistic transport). They found that lee decreases rapidly with T. For 
instance, in their Fig. 3(a) they calculated lee in suspended graphene at a charge density 
n = 1010 cm-2 which is close to the density in our devices (1.7 and 2.1 x 1010 cm-2). They 
found that lee ≈ 200 nm at T = 100 K. This is shorter than our devices, but only by a 
factor of 2 or 3. However, the lee in our devices should be much shorter due to disorder 
(measured from the width of the R-VG peak). Quoting Li and Das Sarma (conclusion): “It 
is well known that disorder has qualitative and quantitative effects on the inelastic mean 
free path and the phase breaking length, in general, suppressing the mean free path 
substantially from its ballistic limit.” 
 
Another piece of evidence supporting that lee in our devices is much shorter than their 
total length is shown in Fig. S5 where we observe a small, but clearly visible, 
mesoscopic oscillation in the G-VG characteristic of Sample B at T = 17 K. This 
oscillation disappears as T is raised above T = 30 K. Mesoscopic oscillations (quantum 
interferences) are expected when lee is much longer than le-imp, and should disappear 
when lee ≲  le-imp. Thus, Fig. S5 suggests that lee ≲  le-imp at T ≳  30 K. Since le-imp is 
significantly shorter than the size of the sample (see main text, and SM section 2), we 
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expect the same to hold for lee. We do not observe mesoscopic fluctuations in our 3 
devices over the T range where we report Ke. We also note that Du et al. [S4] studied 
samples which are very similar to ours (length of 0.5 micron, suspended, current 
annealed, and showing similar mobility and elastic mean-free path), and also observed 
that mesoscopic fluctuations disappeared above T ≈ 20  - 40 K (see their Fig. 3(c)). 
Finally, the agreement between our experimentally extracted and theoretically 
calculated Ke, over the entire T range studied, strongly supports a well defined Te(x). 

 
Figure S5: Mesoscopic conductance oscillation in Sample B. G vs VG at T = 17 and 50 K for 
Device B. The black arrow indicates a conductance oscillation which disappears at T > 30 K, 
suggesting that the inelastic mean-free path (due to e-e collisions) is comparable to the elastic 
mfp (e-impurity collisions) in this sample around 30 K. The inset shows G vs VG at several T 
between 17 K and 50 K, the curves are offset for clarity. 
 
We also note that since the graphene which is buried under the gold contacts was not 
current annealed, it is much more disordered that the suspended portion of the device. 
This large increase in disorder should lead to a reduced lee under the gold, implying that 
lee-under < lee-exposed.  
 
 
6. Error analysis 
 
To calculate the uncertainties on the values extracted for Ke, using Eq. S3 below, we 
account for four sources of uncertainty: error on the sample’s length, ΔL, width ΔW, 
resistance ΔR due to the contact resistance RC, and extracted electronic temperature 
ΔTe. We estimate ΔL ≈ 40 nm, ΔW ≈ 50 nm, ΔR = RC = R0 (which is an upper limit since 
R0 = RC + resistance from neutral scatterers), and ΔTe = the standard deviation of Te 
from the fit of Te vs VB as shown in Figs. 3(d), S2(d) and S3(d). We note that the 
uncertainty ΔTe is inversely proportional to the slope of the calibration curve, Fig. 2(a), at 
Te.  
  

𝐾𝑒 = 𝑅𝐼2𝐿
12𝑊ℎ∆𝑇

                                                             (S3) 
 
The error on the measured current 𝐼 is negligible compared to the other sources of error, 
and the thickness h = 0.335 nm is a standard value used by all experiments and theory. 
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Note that ΔT = Te –T where T is the cryostat temperature. The error on T is about 0.1 K 
and comes from the accuracy of our temperature controller, thus the error on ΔT is 
roughly ΔTe + 0.1K. We calculate ΔKe using Eq. S4, 
 

∆𝐾𝑒
𝐾𝑒

= ��∆𝐿
𝐿
�
2

+ �∆𝑊
𝑊
�
2

+ �∆𝑅
𝑅
�
2

+ �∆(∆𝑇)
∆𝑇

�
2
                                (S4) 

 
The calculated errors are shown in Fig. 4. For example, the error bars ∆𝐾𝑒/𝐾𝑒 at T = 
100 K are 18.3 %, 24.1% and 25.8% from Samples A, B, and C. 
 
 
7. Specific heat calculation 
 
We calculate the charge carrier specific heat, 𝐶𝑒 =  𝑑𝑈𝑒

𝑑𝑇
 , where the total energy of the 

charged quasiparticles, 𝑈𝑒, is calculated from the density of states and Dirac statistic for 
quasiparticles in graphene as, 
 

𝑈𝑒 =  ∫ 2𝜖2

𝜋(ℏ𝑣𝐹)2
∞
0

1
𝑒(𝜖−𝜇)/𝑘𝑇+1

 𝑑𝜖 −  ∫ 2𝜖2

𝜋(ℏ𝑣𝐹)2
0
−∞ � 1

𝑒(𝜖−𝜇)/𝑘𝑇+1
− 1�  𝑑𝜖             (S5) 

 
where  𝜇 =  𝜇𝑒𝑓𝑓(𝑇 = 0) =  ℏ𝑣𝐹�𝜋𝑛𝑡𝑜𝑡(𝑇 = 0) =  14.8, 15.4 and 17.1 meV are the 
effective chemical potential for Samples A, B and C respectively. 𝑛𝑡𝑜𝑡 is defined above 
in Eq. S1 and includes both the gate induced charge density and the impurity induced 
density. 
 
 
8. Electron cooling length estimate 
 
Bistritzer and MacDonald [S5] calculated the electron-acoustic phonon scattering rate 
for graphene in the intrinsic regime. They found, 
 

𝛾𝑒−𝑎𝑐 = 1.18 × 103 𝐷2 (meV2.s)-1 * (𝑘𝐵𝑇𝑒)2                               (S6) 
 
where 𝐷 is the deformation potential measured in eV. The value of 𝐷 is not well known 
and has been reported in the range of 10 – 50 eV. We set 𝐷 = 20 eV, as in Ref. S5 and 
most other theoretical work. We find 𝛾𝑒−𝑎𝑐 = 1.7 x 106 – 1.2 x 108 s-1 for Sample A over 
the studied 𝑇𝑒 range, 3.2 x 106 – 3.3 x 108 s-1 for Sample B, and 2.4 x 107 – 1.6 x 108 s-1 
for Sample C. Based on these scattering rates, we can estimate the electron cooling 
length as 
 

𝜉 = � 𝐾𝑒
𝛾𝑒−𝑎𝑐𝐶𝑒

                                                                  (S7) 

 
Where 𝐾𝑒  is the measured heat conductivity in Fig. 4, and 𝐶𝑒  the calculated specific 
heat from section 7 (above). We find 𝜉 = 150 to 14 µm for Sample A, 𝜉 = 74 to 8.5 µm 
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for Sample B, and 𝜉 = 27 to 11 µm for sample C over the 𝑇𝑒 range in Fig. 4. These 
values are always much larger than the length of the devices, 650 nm for A and 400 nm 
for B and C, which ensures that most of the Joule heating stays in the charge carriers 
until they reach the gold contacts. 
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