Concordia University

School of Graduate Studies

DOCTORAL THESIS DEFENCE

The Oral Examination

for the Degree of Doctor of Philosophy of

Patrick Meisner

in the

Department of Mathematics & Statistics

will take place on

Monday, August 22, 2016

in room LB 921-4, 1400 de Maisonneuve Blvd. W.

at 11:00 a.m.

Thesis Title:

Distribution of the Number of Points on Abelian Curves over Finite Fields

Examining Committee:

Dr. Pablo Bianucci (Physics), Chair

Dr. Chantal David (Mathematics & Statistics), Supervisor

Dr. Mariana Frank (Physics)

Dr. Hershy Kisilevsky (Mathematics & Statistics)

Dr. Lea Popovic (Mathematics & Statistics)

External Examiner:

Dr. Yu-Ru Liu

Department of Pure Mathematics

University of Waterloo

ABSTRACT

Distribution of the Number of Points on Abelian Curves over Finite Fields

Patrick Meisner, Ph.D.

Concordia University, 2016

Classical results due to Katz and Sarnak [8] show that if the genus is fixed and $q \to \infty$, then the number of points on a family of curves over \mathbb{F}_q is distributed as the trace of a random matrix in the monodromy group associated to the family.

Every smooth projective curve C corresponds to a finite Galois extension of $\mathbb{F}_q[X]$. Therefore, some natural families to consider are the curves that correspond to a extensions with a fixed Galois group. This thesis involves determining the distribution of the families with fixed abelian Galois group, G, when g is fixed and the genus tends to infinity.

Several authors determined that the distribution for the family of prime-cyclic curves $(G = \mathbb{Z}/p\mathbb{Z}, p \text{ a prime})$ [2],[3],[9] as well as for the family of biquadratic curves $(G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$ [10] is that of a sum of q + 1 random variables. This thesis shows that if we fix any abelian group, the distribution will be that of q + 1 random variables.

The above results deal only with the distribution for the coarse irreducible moduli space of the families. It has been shown in [1] that if you look at the whole (coarse) moduli space, the distribution is the same in the case of prime-cyclic curves. We are able to show that the distribution is the same for the coarse moduli space of curves with $G = (\mathbb{Z}/Q\mathbb{Z})^n$, Q a prime. Some work is done towards proving this true for all abelian groups.