PART "A" COMPREHENSIVE EXAMINATION
 GENERAL PART A1
 Probability and Statistics

June $2022 \quad 3$ hours 3 pages

Administered by

G. Dafni

Maximum marks: 100

Special Instructions: Do all questions. Read the problems carefully. Show all your work and justify your answers rigourously. Solutions must be clearly written in the examination booklet.
PERMITTED: approved calculators
NOT PERMITTED: books, notes, electronic devices or any material other than calculators. GOOD LUCK!

1. (15 marks)

(a) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function and suppose for every strictly decreasing sequence $\left\{x_{n}\right\}$ converging to 0 , the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to 2 . Prove that $\lim _{x \rightarrow 0^{+}} f(x)=2$.
(b) Prove that $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-2 n}$ converges and find its sum.
(c) If $\left\{a_{n}\right\}$ is a sequence of positive real numbers with $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{1}{2}$, prove that $a_{n} \rightarrow 0$. Hint: you may use facts about infinite series.

2.(20 marks)

(a) Let V be the vector space of real polynomials of degree ≤ 2, with basis $B=\left\{1, x, x^{2}\right\}$. Let $T: V \mapsto V$ be the linear transformation sending a polynomial $p(x)$ to $p(x)+p^{\prime}(x)+p^{\prime \prime}(x)$ (where $p^{\prime}(x)$ and $p^{\prime \prime}(x)$ denote the first and second derivatives of the polynomial p.) Write down the matrix of T relative to the basis B.
(b) Is the matrix in part (a) diagonalizable? Explain.
(c) Let V_{1} and V_{2} be two vector subspaces of a vector space V. Which of the following subsets are always vector spaces? Justify your answers using short proofs or counterexamples.
(i) The intersection of V_{1} and V_{2}.
(ii) The union of V_{1} and V_{2}
(iii) The span of V_{1} and V_{2}
(iv) The vectors that are in V_{1} but not in V_{2}
(v) The complement of the span of V_{1} and V_{2}.
3.(15 marks) Let X_{1}, X_{2}, X_{3} be three independent random variables. Suppose that X_{1} is uniformly distributed over the interval $(-1,1), X_{2}$ is exponentially distributed with mean $1 / 2$, and X_{3} is exponentially distributed with mean $1 / 3$. Define

$$
Z= \begin{cases}0, & \text { if } X_{1}+X_{2}<3 \\ -2, & \text { otherwise }\end{cases}
$$

(a) Compute $E\left[Z \mid X_{1}\right]$ and $\operatorname{Var}\left(Z \mid X_{1}\right)$.
(b) Compute $\operatorname{Var}\left\{\left(X_{1}+X_{2}+X_{3}\right) \mid X_{2}>1\right\}$.
4. (15 marks) Suppose a 3-state, discrete-time Markov chain $\left\{X_{n}\right\}_{n \geq 0}$ has states $1,2,3$, and $\mathbb{P}\left[X_{0}=1\right]=0.35, \mathbb{P}\left[X_{0}=2\right]=0.25$. The transition matrix of the Markov chain is

$$
P=\left[\begin{array}{lll}
0.1 & 0.2 & 0.7 \\
0.3 & 0.4 & 0.3 \\
0.2 & 0.5 & 0.3
\end{array}\right]
$$

Calculate $\mathbb{P}\left[\left\{\left(X_{2}-X_{1}\right)^{2}=1\right\} \cup\left\{X_{0}=2\right\}\right]$.
5(a) (10 marks) A sample of size 5, say X_{1}, \ldots, X_{5}, is taken from a Bernoulli (θ) distribution, i.e.,

$$
\mathbb{P}\left[X_{i}=1\right]=\theta=1-\mathbb{P}\left[X_{i}=0\right], 1 \leq i \leq 5
$$

Consider the problem of testing hypotheses

$$
H_{0}: \theta=0.5 \text { vs. } H_{1}: \theta=0.75 .
$$

For the non-randomized test given by the function

$$
\varphi\left(X_{1}, \ldots, X_{5}\right)= \begin{cases}1 & \text { i.e., reject } H_{0}, \text { if } \quad \sum_{i=1}^{5} X_{i}>4, \\ 0 & \text { i.e., accept } H_{0}, \text { if } \quad \sum_{i=1}^{5} X_{i} \leq 4,\end{cases}
$$

find the probabilities of type I and type II errors.
5 (b) (5 marks) If it is required to achieve a size equal to 0.05 , how should you modify the above test.

6(a) (10 marks) Consider the linear regression model:
$Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, E\left[\epsilon_{i}\right]=0, \operatorname{Var}\left[\epsilon_{i}\right]=\sigma^{2}, \operatorname{Cov}\left[\epsilon_{i}, \epsilon_{j}\right]=0,1 \leq i \neq j \leq n$,
where $\beta_{0}, \beta_{1}, \sigma^{2}>0$ are unknown model parameters, but $-1 \leq x_{i} \leq$ $1,1 \leq i \leq n$, are non-random covariates that may be chosen by the experimenter, subject to $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>0$, where $\bar{x}=\sum_{i=1}^{n} x_{i} / n$. Let $\hat{\beta}_{0}, \hat{\beta}_{1}$ be the least-squares estimators of β_{0}, β_{1}. Find $\operatorname{Var}_{\sigma^{2}}\left(\hat{\beta}_{1}\right)$ and the choices of x_{1}, \ldots, x_{n} that minimize $\operatorname{Var}_{\sigma^{2}}\left(\hat{\beta}_{1}\right)$ for every $\sigma^{2}>0$.

6(b) (10 marks) Consider the linear model:

$$
\left[\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3} \\
Y_{4} \\
Y_{5}
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\theta_{3} \\
\theta_{4}
\end{array}\right]+\underline{\varepsilon},
$$

where $E\left[\epsilon_{i}\right]=0, \operatorname{Var}\left[\epsilon_{i}\right]=\sigma^{2}, \operatorname{Cov}\left[\epsilon_{i}, \epsilon_{j}\right]=0,1 \leq i \neq j \leq 5$, and $\theta_{j}, 1 \leq j \leq 4, \sigma^{2}>0$ are unknown model parameters. Note that the design matrix above is not of full column rank. Find the BLUE (best linear unbiased estimator) for $\left(\theta_{2}-\theta_{3}\right)$ and the variance of the BLUE.

