Concordia University

Department of Mathematics and Statistics

Ph. D. Comprehensive Examination - Part A1 Stat

Date: October 2022
Time Allowed: 3 hours
Special Instructions:

- Do all questions. The marks are indicated in square brackets.
- Read the problems carefully. Show all your work and justify your answers rigourously.
- Solutions must be clearly written in the examination booklet.
- PERMITTED: approved calculators
- NOT PERMITTED: books, notes, electronic devices or any material other than calculators.
Q. 1.(20 marks)
(a) ($\mathbf{1 0}$ marks) Let A be the 4×4 matrix

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Find the Jordan normal form of the matrix A^{2}.
(b) ($\mathbf{1 0}$ marks) Consider the unit cube in the space R^{n}, rotated so that the vertex $(1,1, \ldots, 1)$ is mapped to the point $A=(\sqrt{n}, 0,0, \ldots, 0)$. Denote the origin by $O=(0,0, \ldots, 0)$. Find the coordinates of the orthogonal projections of all the 2^{n} vertices of the rotated cube on the segment $O A$ (the "space" diagonal of the cube).

Q. 2.(20 marks)

(a) (10 marks) Let f be a function in $C^{1}([0, \pi])$ (i.e., f and f^{\prime} are both continuous) such that $f(0)=f(\pi)=0$.
i) Prove that the integrals $I_{1}=\int_{0}^{\pi} f^{2}(x) \frac{1}{\sin ^{2} x} d x$ and $I_{2}=\int_{0}^{\pi} f^{\prime}(x) f(x) \cot x d x$ converge.
ii) Show that $I_{1}=2 I_{2}$.
(b) (10 marks) Let f be a differentiable function on an interval $[a, b]$ with $0<a<b$. Prove that there exists a point $\theta \in(a, b)$ such that

$$
\frac{\left|\begin{array}{cc}
a & b \\
f(a) & f(b)
\end{array}\right|}{a-b}=f(\theta)-\theta f^{\prime}(\theta)
$$

Q. 3.(15 marks) m red balls and n black balls are placed in a box and they are taken out one by one randomly without replacement.
(a) Let X be the total number of red balls taken out before the first black ball is removed. Find $E[X]$. Show your work.
(b) Let Y be the total number of red balls taken out before the second black ball is removed. Find $E[Y]$. Show your work.
Q. 4.(15 marks) Suppose that Y_{1} and Y_{2} are independent random variables, both having exponential distribution with mean 3. Let $X=$ $Y_{1}+Y_{2}$ and $Y=Y_{1} / Y_{2}$.
(a) Find the joint density function of (X, Y) and the respective marginal densities.
(b) Are X and Y independent? Why?
Q. 5. (15 marks) Let X_{1}, X_{2} be iid with Exponential (θ) distribution, i.e., with common pdf

$$
f(x \mid \theta)=\frac{1}{\theta} \exp (-x / \theta), x \geq 0
$$

where $\theta>0$ is an unknown parameter. Consider the hypotheses H_{0} : $\theta=2$ vs. $H_{1}: \theta=1$, and the following test:

$$
\text { reject } H_{0} \text { if } \frac{\prod_{i=1}^{2} f\left(X_{i} \mid 2\right)}{\prod_{i=1}^{2} f\left(X_{i} \mid 1\right)} \leq \frac{1}{2}
$$

Calculate the size and the power of the test, using the fact that $Y:=$ $X_{1}+X_{2}$ has Gamma ($2, \theta$) distribution, i.e., has pdf

$$
g(y \mid \theta)=\frac{1}{\theta^{2}} y \exp (-y / \theta), y \geq 0
$$

Evaluate the integrals involved completely.
Q. 6. ($\mathbf{1 5}$ marks) Consider the linear regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, 1 \leq i \leq n, n \geq 3,
$$

where $\epsilon_{1}, \ldots, \epsilon_{n}$ are iid Normal $\left(0, \sigma^{2}\right), \beta_{0}, \beta_{1}, \sigma^{2}>0$ are unknown model parameters, but $x_{i}, 1 \leq i \leq n$, are non-random co-variates such that $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>0$, where $\bar{x}=\sum_{i=1}^{n} x_{i} / n$. Let $\hat{\beta}_{0}, \hat{\beta}_{1}$ be the leastsquares estimators of β_{0}, β_{1}. Write down the expressions for $\hat{\beta}_{0}, \hat{\beta}_{1}$, and find their expectations, variances and covariance.

Good Luck!!

