MATH 366 Complex Analysis I Winter 2020

Instructor: Dr. J. Harnad, Office: LB 901-25 (SGW)

Email: j.harnad@concordia.ca

Class Schedule: Wed., Fri., 11:45 a.m - 1:00 p.m. Jan. 6 - Apr. 9, 2020.

Office Hours: Wed., 2:00 p.m. – 3:00 p.m.

Prerequisites: Math 264/265 or an equivalent multivariable calculus course.

Text: Complex Variables and Applications, 9th Edition (2014) by J. W. Brown and R. V.

Churchill (McGraw-Hill Education).

Assignments: Assignments, consisting of 8-10 problems (drawn mainly from the textbook)

will be due weekly. These are *very important* for the process of learning. They indicate the level of difficulty of the problems that all students are expected to be able to solve. Every effort should be made to do this, and understand them *independently*. The submitted assignments will be viewed by the grader and a representative sample will be graded. Complete solution sets will be posted weekly, on the day of submission, so late submissions cannot be accepted. These grades, based on the 10 best grades received, are worth 10% of the total grade. The main purpose of grading is to provide accurate feedback to the students (and the professor) on how well they are keeping up with the course

material.

Use of Computer Algebra System:

It is optional but recommended to install and use Maple or Mathematica. These symbolic computational tools can be used to verify and illustrate any

analytical results you get while doing your assignment problems.

MATH 366 – Winter 2020 Page 2

Calculators:

Only "Faculty approved calculators" (SHARP EL-531 or CASIO FX-300MS) are allowed in examination rooms during midterm and final exams. Cell phones and any other electronic communication devices must be switched off **prior** to entering the examination room.

Test:

A **midterm test**, covering the first seven weeks of the course, and evaluated as 30% of the total grade will be given in week 9.

Final Grade:

The highest of the following:

- 100% final exam
- 30% midterm, 10% assignments, and 60% final exam.

The grading scheme for this course includes graded assignments of which a reasonable and representative subset will be graded. Students will not be told in advance which subset of the assigned problems will be marked and should therefore attempt all assigned problems.

Approximate schedule of topics

Week	Chapters	Topics	Assignments (Numbering: 9th edition)	Due date
1.	Ch. 1.	Complex numbers: algebraic	Notation: Sec 3, #5 = 3.5	Jan. 15
Jan. 8, Jan. 10	Secs. 1- 12	properties; complex plane; conjugates, polar form; roots	3.5, 5.3, 5.5(a,b,c), 6.9, 6.15, 9.5(a,c), 9.6, 9.9, 11.5, 11.7	(assignment 1)
2. Jan. 15, Jan. 17	Ch. 2. Secs. 13- 24	Analytic functions 1: mappings, limits, continuity, derivatives, Cauchy-Riemann equations, CR equations in polar coordinates, examples	14.6, 18.10, 24.1(a,c), 24.2(a,c), 24.4 (a,b), 24.5, 24.7(a,b)	Jan. 22, (assignment 2)
3. Jan. 22, Jan. 24	Ch. 2. Secs. 25- 29	Analytic functions 2: harmonic functions, reflection principle, analytic continuation	26.2(a,c),	Jan 29, (assignment 3)
4. Jan 29, Jan. 31	Ch. 3. Secs. 30- 40	Elementary functions: exponential, complex exponents, trigonometric functions, hyperbolic functions, inverses	30.3,	Feb. 5, (assignment 4)
5. Feb. 5, Feb. 7	Ch. 4. Secs. 41- 51	Integrals 1: Contours, contour integrals, branch cuts, connected domains, antiderivatives, Cauchy-Goursat theorem.	42.2 (a,c),	Feb. 12, (assignment 5)

6. Feb. 12, Feb. 14	Ch. 4. Secs. 52- 57	Integrals 2: Multiply connected domains; Cauchy integral formula, extensions for derivatives	57.3,	Feb. 19, (assignment 6)
7. Feb. 19, Feb. 21	Ch. 4. Secs. 58- 9 Ch. 5. Secs. 60- 65	4. Liouville's theorem, maximal modulus principle, fundamental theorem of algebra.5. Series: convergence, Taylor series	59.1,	March 4, (assignment 7)
Feb. 26, Feb. 28		Mid-term break		
8. March 4, March 6	Ch. 5. Secs. 65- 73	5. Laurent series, absolute and uniform convergence, integration and differentiation of power series; uniqueness; multiplication	68.2,	March 13 (assignment 8)
9. March 11	Midterm: March 11.	March 11: Midterm test Closed book. Chapters 1-4: all sections; Chapt. 5, Secs. 60-65.		March 13 (assignment 8)
March 13	Ch.6. Sec. 74-76, 78	6. Types of singular points, isolated singular points, poles, residues at poles, Cauchy residue theorem		
10. March 18, March 20	Ch. 6. Sec. 77 -84 Ch. 7. Sec. 85-87	6. Cauchy residue theorem (cont'd), residues at infinity, zeros of analytic functions, behaviour near isolated singular points, examples; 7. Applications of residues, improper integrals	77.2,	March 25 (assignment 9)
11. March 25, March 27	Ch. 7. Sec. 88-93 Ch. 8. Secs. 96- 100	7. Jordan's lemma, indented paths, integration along a branch cut; definite integrals involving sines and cosines, argument principle. (Omit: Secs. 94, 95) 8. Mapping by elementary functions: linear transformations, inverse map, linear fractional transformations,	86.4,	Apr. 1 (assignment 10)

12.	Ch. 8.	8. Mapping by elementary	96.5,	Apr. 8
Apr. 1,	Secs.	functions: mappings of the		(assignment
Apr. 3	101-103,	upper half-plane, linear		11)
-	107, 108	fractional transformations,		ŕ
		$w=e^z$, z^2 , $z^{(1/2)}$.		
	110,111	Riemann surfaces		
	(Omit all			
	other			
	sections.)			
13.	Ch. 9.	9. Conformal maps:		
Apr. 8	Secs. 112,	preservation of angles,		
_	113, 114,	examples, harmonic conjugates,		
	115, 116	transformations of harmonic		
	(Omit all	functions		
	other			
	sections)			

Academic Integrity and the Academic Code of Conduct

This course is governed by Concordia University's policies on Academic Integrity and the Academic Code of Conduct as set forth in the Undergraduate Calendar and the Graduate Calendar. Students are expected to familiarize themselves with these policies and conduct themselves accordingly. "Concordia University has several resources available to students to better understand and uphold academic integrity. Concordia's website on academic integrity can be found at the following address, which also includes links to each Faculty and the School of Graduate Studies: concordia.ca/students/academic-integrity." [Undergraduate Calendar, Sec 17.10.2]