Department of Mathematics & Statistics
Concordia University

![Departmental website](http://www.mathstat.concordia.ca)

MAST 221
Applied Probability
Fall 2019

Instructor: Dr. D. Sen, Office: LB 1041-21 (SGW), Phone: (514) 848-2424, Ext. 3241
Email: debaraj.sen@concordia.ca

Office Hours: Mondays, 11:00–12:30 PM.

Text:

Assignments: There will be 5 or 6 assignments. Assignments are compulsory. Students are expected to submit their assignments in class. **Late assignments will not be accepted.** Assignments contribute 10% to your final grade. Working regularly on the assignments is essential for success in this course.

Calculators: Only calculators approved by the Department (with a sticker attached as a proof of approval), such as **Sharp EL 531** or the **Casio FX 300MS**, available at the Concordia Bookstore, are permitted for the class test and final examination. See https://www.concordia.ca/content/dam/artsci/math-stats/docs/AppCalculatorList.pdf for details.

Midterm Test: There will be one **midterm test**, based on the material of weeks 1–7, which will contribute up to 20% to your final grade (see the **Grading Scheme** below). Midterm test will be held on **Monday, October 28, 2019 in class.** This exam, as well as the final, will be closed book exams.

NOTE: It is the Department’s policy that tests missed for any reason, including illness, cannot be made up. If you miss the midterm test **because of illness** (**medical note required**) the final exam will count for 90% of your final grade, and the assignments will count for the remaining 10%.

Final Exam: The final examination will be 3 hours long and will cover all the material in the course. In order to obtain a good grade, the student **MUST** show that she/he has a THOROUGH understanding of the subject and is good at problem solving.
NOTE: Students are responsible for finding out the date and time of the final exams once the schedule is posted by the Examinations Office. Conflicts or problems with the scheduling of the final exam must be reported directly to the Examinations Office, not to your instructor. It is the Department's policy and the Examinations Office's policy that students are to be available until the end of the final exam period. Conflicts due to travel plans will not be accommodated.

Grading Scheme: The final grade will be based on the higher of (a) or (b) below:

a) 10% for the assignments,
 20% for the midterm test,
 70% for the final exam.

b) 10% for the assignments,
 10% for the midterm test,
 80% for the final exam.

If the grading scheme for this course includes graded assignments, a reasonable and representative subset of each assignment may be graded. Students will not be told in advance which subset of the assigned problems will be marked and should therefore attempt all assigned problems.

IMPORTANT: PLEASE NOTE THAT THERE IS NO ‘100% FINAL EXAM” OPTION IN THIS COURSE.

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 2</td>
<td>Chapter 2: Probability</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>Sample Spaces</td>
</tr>
<tr>
<td></td>
<td>Events</td>
</tr>
<tr>
<td></td>
<td>The Probability of an Event</td>
</tr>
<tr>
<td></td>
<td>Some Rules of Probability</td>
</tr>
<tr>
<td></td>
<td>Conditional Probability</td>
</tr>
<tr>
<td></td>
<td>Independent Events</td>
</tr>
<tr>
<td></td>
<td>Bayes' Theorem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3: Probability Distributions and Probability Densities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Variables</td>
</tr>
<tr>
<td>Probability Distributions</td>
</tr>
<tr>
<td>Continuous Random Variables</td>
</tr>
<tr>
<td>Probability Density Functions</td>
</tr>
<tr>
<td>Multivariate Distributions</td>
</tr>
<tr>
<td>Marginal Distributions</td>
</tr>
<tr>
<td>Conditional Distributions</td>
</tr>
</tbody>
</table>
Chapter 4: Mathematical Expectation

- Introduction
- The Expected Value of a Random Variable
- Moments & Cumulants
- Chebyshev’s Theorem
- Moment Generating Functions
- Product Moments
- Moments of Linear Combinations of Random Variables
- Conditional Expectations and Conditional Variances

Mid-Term Test

Chapter 5: Special Probability Distributions

- Introduction
- The Discrete Uniform Distribution
- The Bernoulli Distribution
- The Binomial Distribution
- The Negative Binomial Distribution and Geometric Distribution
- The Hypergeometric Distribution
- The Poisson Distribution
- The Multinomial Distribution

Chapter 6: Special Probability Densities

- Introduction
- The Uniform Distribution
- The Gamma, Exponential and Chi-square Distributions
- The Beta Distribution
- The Normal Distribution
- The Normal Approximation to the Binomial Distribution
- The Normal Approximation to the Poisson Distribution

Review

Academic Integrity and the Academic Code of Conduct

This course is governed by Concordia University’s policies on Academic Integrity and the Academic Code of Conduct as set forth in the Undergraduate Calendar and the Graduate Calendar. Students are expected to familiarize themselves with these policies and conduct themselves accordingly. “Concordia University has several resources available to students to better understand and uphold academic integrity. Concordia’s website on academic integrity can be found at the following address, which also includes links to each Faculty and the School of Graduate Studies: concordia.ca/students/academic-integrity.” [Undergraduate Calendar, Sec 17.10.2]