A primer in Random Matrices

Marco Bertola

Mathematics and Statistics, Concordia University, Montréal, Canada

Math 680B (MAST 856B): 2017

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

RANDOM MATRICES

SHORT DESCRIPTION

Random Matrices were introduced by Wigner in the '50 to model the energy levels of absorption/emission of heavy nuclei. They have found a wide range of applications that include; orthogonal polynomials, cellular networks, number theory, enumerative geometry.

The course is an introduction to the problems and set techniques; an example of question that we will set answer is how to explain the following histogram to the eigenvalue distribution of 100000 Hermitean 10×10 random matrices with independent normally distributed entries: can we explain the clearly visible "ripples"? (yes)

Or for example explain the Szegö curve, i.e. why the roots of the Taylor polynomials $T_N(z) = \sum_{j=0}^N \frac{z^n}{n!}$ of e^z tend to the curve $|ze^{1-z}| = 1$. (up to a rescaling; here the zeroes of $T_{80}(80z)$)

Oddly, the answers to both questions use the same techniques!

The main references from which material will be lifted are [2], [1] and the notes [3]. The following is a rough list of topics, to be added (or subtracted!) as time permits.

1 RANDOM MATRICES

- Examples: introduction of GUE, GOE, GSE and β -ensembles
- Spectral asymptotics: Wigner Semicircle Law
- GUE's and Unitary ensembles
 - Weyl integration formula
 - Dyson theorem
 - Orthogonal Polynomials techniques
- Fluctuations of the largest eigenvalue
 - Determinantal Point processes and Fredholm determinants
 - Tracy-Widom distribution: statement and proof
- Universality of local asymptotic behaviour: Sine and Airy Kernels
- Multi-Matrix models
 - Determinantal Random Point Fields and Processes
 - Computations of Gap probabilities

EVALUATION

There will be two take home assignments (50%) and either a take-home final or a presentation on a topic to be decided.

Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni.

An introduction to random matrices, volume 118 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge, 2010.

P. A. Deift.

Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, volume 3 of Courant Lecture Notes in Mathematics.

New York University Courant Institute of Mathematical Sciences, New York, 1999.

Slava Kargin Elena Yudovina. Random matrix theory. 2011.